Nicotine's Potential to Protect Brain Cells: The Influence of Nicotine on Alzheimer's Disease Risk in the United States: A Scoping Review
DOI:
https://doi.org/10.53819/81018102t4132Abstract
Nicotine consumption increases brain excitability in a dispersed system of brain areas, such as the frontal cortex, amygdala, cingulate, and frontal lobes, in a dose-dependent manner. Stimulation in these areas is compatible with nicotine's ability to arouse and reinforce behaviour in humans. However, the effects of nicotine consumption on brain cells and the way it modifies them to either inhibit AD or facilitate AD is still unknown, therefore, the current scientific article aimed to address this research gap through analysing prior but latest research studies in this domain. Since there was a need to establish and explore more research regarding the positive impacts of Nicotine on patients with AD, a qualitative research design using secondary data was used to conduct the present scientific evidence. Four published papers within the year range 2017 to 2023 were acquired and thematically evaluated. Mixed findings regarding the impact of nicotine on brain cells and probability of getting AD were found however, there has been no clinical trials or enough empirical studies to support this assumption. Therefore, more research will be needed in the prospective to obtain credible and supporting results.
Keywords: Nicotine, Brain cells, nicotinic receptors, Alzheimer’s disease.
References
Alderson, P., & Morrow, V. (2020). The ethics of research with children and young people: A practical handbook. Sage.
Aleisa, A. M., Helal, G., Alhaider, I. A., Alzoubi, K. H., Srivareerat, M., Tran, T. T., ... & Alkadhi, K. A. (2011). Acute nicotine treatment prevents rem sleep deprivation‐induced learning and memory impairment in rat. Hippocampus, 21(8), 899-909.
Alhowail A. (2021). Molecular insights into the benefits of nicotine on memory and cognition (Review). Molecular medicine reports, 23(6), 398. https://doi.org/10.3892/mmr.2021.12037
California Institute of Technology, (2019). This is a neuron on nicotine: Nicotine works inside cells to reinforce addiction. ScienceDaily. Retrieved October 25, 2022 from www.sciencedaily.com/releases/2019/02/190207123248.htm
Cataldo, J. K., Prochaska, J. J., & Glantz, S. A. (2010). Cigarette smoking is a risk factor for Alzheimer's disease: an analysis controlling for tobacco industry affiliation. Journal of Alzheimer's disease, 19(2), 465-480.
Cohen, A., Soleiman, M. T., Talia, R., Koob, G. F., George, O., & Mandyam, C. D. (2015). Extended access nicotine self-administration with periodic deprivation increases immature neurons in the hippocampus. Psychopharmacology, 232(2), 453-463.
Counotte, D. S., Smit, A. B., and Spijker, S. (2012). The Yin and Yang of nicotine: harmful during development, beneficial in adult patient populations. Front. Pharmacol. 3:180. doi: 10.3389/fphar.2012.00180
Deardorff, W. J., Shobassy, A., & Grossberg, G. T. (2015). Safety and clinical effects of EVP-6124 in subjects with alzheimer's disease currently or previously receiving an acetylcholinesterase inhibitor medication. Expert Review of Neurotherapeutics, 15(1), 7–17. https://doi.org/10.1586/14737175.2015.995639
Deutsch, S. I., Burket, J. A., Benson, A. D., & Urbano, M. R. (2016). The 15q13.3 deletion syndrome: Deficient α7-containing nicotinic acetylcholine receptor-mediated neurotransmission in the pathogenesis of Neurodevelopmental Disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 64, 109–117. https://doi.org/10.1016/j.pnpbp.2015.08.001
Durairajan, S. S. K., Liu, L. F., Lu, J. H., Chen, L. L., Yuan, Q., Chung, S. K., ... & Li, M. (2012). Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer's disease transgenic mouse model. Neurobiology of Aging, 33(12), 2903-2919.
Echeverria Moran, V. (2013). Brain effects of nicotine and derived compounds. Frontiers in Pharmacology, 4. https://doi.org/10.3389/fphar.2013.00060
Echeverria, V., Zeitlin, R., Burgess, S., Patel, S., Barman, A., Thakur, G., ... & Arendash, G. W. (2011). Cotinine reduces amyloid-β aggregation and improves memory in Alzheimer's disease mice. Journal of Alzheimer's disease, 24(4), 817-835.
Fellows, R. F., & Liu, A. M. (2021). Research methods for construction. John Wiley & Sons.
Grossberg, G. T. (2003). Cholinesterase inhibitors for the treatment of Alzheimer's disease:: getting on and staying on. Current Therapeutic Research, 64(4), 216-235.
Grundey, J., Thirugnanasambandam, N., Kaminsky, K., Drees, A., Skwirba, A. C., Lang, N., et al. (2012). Rapid effect of nicotine intake on neuroplasticity in non-smoking humans. Front. Pharmacol. 3:186. doi: 10.3389/fphar.2012.00186
Hellström-Lindahl, E., Mousavi, M., Ravid, R., & Nordberg, A. (2004). Reduced levels of Aβ 40 and Aβ 42 in brains of smoking controls and Alzheimer's patients. Neurobiology of disease, 15(2), 351-360.
Jagust, W. (2013). Apolipoprotein E, neurodegeneration, and Alzheimer disease. JAMA neurology, 70(3), 299-300.
Kadir, A., Almkvist, O., Wall, A., Langstrom, B., and Nordberg, A. (2006). PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer's disease. Psychopharmacology (Berl.) 188, 509–520.
Ma, K.-G., & Qian, Y.-H. (2019). Alpha 7 nicotinic acetylcholine receptor and its effects on alzheimer's disease. Neuropeptides, 73, 96–106. https://doi.org/10.1016/j.npep.2018.12.003
McGregor, A. L., D'Souza, G., Kim, D., & Tingle, M. D. (2017). Varenicline improves motor and cognitive deficits and decreases depressive-like behaviour in late-stage Yac128 Mice. Neuropharmacology, 116, 233–246. https://doi.org/10.1016/j.neuropharm.2016.12.021
McGregor, A. L., D'Souza, G., Kim, D., & Tingle, M. D. (2017). Varenicline improves motor and cognitive deficits and decreases depressive-like behaviour in late-stage Yac128 Mice. Neuropharmacology, 116, 233–246. https://doi.org/10.1016/j.neuropharm.2016.12.021
Mendiola-Precoma, J., Berumen, L. C., Padilla, K., & Garcia-Alcocer, G. (2016). Therapies for prevention and treatment of Alzheimer’s disease. BioMed research international, 2016.
Murphy, M. P., & LeVine III, H. (2010). Alzheimer's disease and the amyloid-β peptide. Journal of Alzheimer's disease, 19(1), 311-323.
Neugroschl, J., & Wang, S. (2011). Alzheimer's disease: diagnosis and treatment across the spectrum of disease severity. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine, 78(4), 596-612.
Newhouse, P., Kellar, K., Aisen, P., White, H., Wesnes, K., Coderre, E., ... & Levin, E. (2012). Nicotine treatment of mild cognitive impairment: a 6-month double-blind pilot clinical trial. Neurology, 78(2), 91-101.
Oddo, S., Caccamo, A., Green, K. N., Liang, K., Tran, L., Chen, Y., ... & LaFerla, F. M. (2005). Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer's disease. Proceedings of the National Academy of Sciences, 102(8), 3046-3051.
Patten, M. L. (2017). Understanding research methods: An overview of the essentials. Routledge.
Pulvermüller, F., Garagnani, M., & Wennekers, T. (2014). Thinking in circuits: toward neurobiological explanation in cognitive neuroscience. Biological cybernetics, 108(5), 573-593.
Punch, K. F., & Oancea, A. (2014). Introduction to research methods in education. Sage.
Puzzo, D., & Arancio, O. (2013). Amyloid-β peptide: Dr. Jekyll or Mr. Hyde?. Journal of Alzheimer's Disease, 33(s1), S111-S120.
Radio, W. A. M. C. N. P. (2012, May 25). Dr. Paul Newhouse, Vanderbilt University – Nicotine and Memory. WAMC. Retrieved October 24, 2022, from https://www.wamc.org/academic-minute/2012-05-25/dr-paul-newhouse-vanderbilt-university-nicotine-and-memory
Sabbagh, M. N., Walker, D. G., Reid, R. T., Stadnick, T., Anand, K., & Lue, L. F. (2008). Absence of effect of chronic nicotine administration on amyloid beta peptide levels in transgenic mice overexpressing mutated human APP (Sw, Ind). Neuroscience letters, 448(2), 217-220.
Serrano-Pozo, A., & Growdon, J. H. (2019). Is alzheimer’s disease risk modifiable? Journal of Alzheimer's Disease, 67(3), 795–819. https://doi.org/10.3233/jad181028
Sharma, A., Gupta, S., Patel, R. & Wardhan, N. (2018). Haloperidol-induced parkinsonism is attenuated by varenicline in mice. Journal of Basic and Clinical Physiology and Pharmacology, 29(4), 395-401. https://doi.org/10.1515/jbcpp-2017-0107
Shivange, A. V., Borden, P. M., Muthusamy, A. K., Nichols, A. L., Bera, K., Bao, H., Bishara, I., Jeon, J., Mulcahy, M. J., Cohen, B., O'Riordan, S. L., Kim, C., Dougherty, D. A., Chapman, E. R., Marvin, J. S., Looger, L. L., & Lester, H. A. (2019). Determining the pharmacokinetics of nicotinic drugs in the endoplasmic reticulum using biosensors. The Journal of general physiology, 151(6), 738–757. https://doi.org/10.1085/jgp.201812201
Smith, R. C., Warner-Cohen, J., Matute, M., Butler, E., Kelly, E., Vaidhyanathaswamy, S., et al. (2006). Effects of nicotine nasal spray on cognitive function in schizophrenia. Neuropsychopharmacology 31, 637–643.
Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of business research, 104, 333-339.
Srinivasan, R., Henderson, B. J., Lester, H. A., & Richards, C. I. (2014). Pharmacological chaperoning of nAChRs: a therapeutic target for Parkinson's disease. Pharmacological research, 83, 20-29.
Srivareerat, M., Tran, T. T., Salim, S., Aleisa, A. M., & Alkadhi, K. A. (2011). Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer's disease. Neurobiology of aging, 32(5), 834-844.
Toulorge, D., Guerreiro, S., Hild, A., Maskos, U., Hirsch, E. C., & Michel, P. P. (2011). Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic ca 2+. The FASEB Journal, 25(8), 2563–2573. https://doi.org/10.1096/fj.11-182824
Truth Initiative. (2022). Nicotine use and stress. Truth Initiative. Retrieved October 26, 2022, from https://truthinitiative.org/research-resources/emerging-tobacco-products/nicotine-use-and-stress
Zappettini, S., Grilli, M., Olivero, G., Mura, E., Preda, S., Govoni, S., et al. (2012). Beta amyloid differently modulate nicotinic and muscarinic receptor subtypes which stimulate in vitro and in vivo the release of glycine in the rat hippocampus. Front. Pharmacol. 3:146. doi: 10.3389/fphar.2012.00146
Zimmer, M. (2020). “But the data is already public”: on the ethics of research in Facebook. In The Ethics of Information Technologies (pp. 229-241). Routledge.
Zoli, M., Pistillo, F., & Gotti, C. (2015). Diversity of native nicotinic receptor subtypes in mammalian brain. Neuropharmacology, 96, 302-311.