## Journal of Procurement & Supply Chain



Digital Supply Chain Optimization and Food Security for Fresh Produce in Nairobi County: A Case Study of Kibra Sub-County

Ingolo Josphine Aluko & Dr. Aden Derow

ISSN: 2617-3581



## Digital Supply Chain Optimization and Food Security for Fresh Produce in Nairobi County: A Case Study of Kibra Sub-County

<sup>1\*</sup>Ingolo Josphine Aluko & <sup>2</sup>Dr. Aden Derow

<sup>1</sup>Postgraduate Student, The Management University of Africa

<sup>2</sup>Postgraduate Student, The Management University of Africa

\*Email address of the Corresponding Author: joeyfinah18@gmail.com

How to cite this article: Ingolo, J. A., & Derow, A. (2025). Digital supply chain optimization and food security for fresh produce in Nairobi County: A case study of Kibra Sub-County. *Journal of Procurement and Supply Chain*, 8(2), 11–23. https://doi.org/10.53819/81018102t7074

### **Abstract**

Food security is a critical challenge in Kenya, with approximately half of the population living in poverty and about 7.5 million, in extreme poverty. This is undermined by challenges in the fresh produce supply chain, such as poor market access and high food loss rates, which adversely affects nutrition outcomes. This study examines the impact of digital supply chain optimization encompassing digital logistics integration, digital market linkages, digital traceability, digital transparency and information sharing, on food security. Grounded under systems theory, the study employed a cross-sectional design. Data was collected from 319 stakeholders via questionnaires and interviews, analyzed using SPSS Version 28 for descriptive and regression statistics, and content analysis for qualitative insights. The findings indicated that digital logistics integration had the strongest positive impact through improved delivery efficiency and reduced post-harvest losses. Digital market linkages showed significance influence, facilitated by mobile platforms like Twiga Foods, Wasoko, Taimba and M-Pesa, though adoption was constrained by low digital literacy and unreliable internet. Digital traceability systems had limited adoption due to infrastructural barriers, while digital transparency enhanced decision-making but lacked regulatory framework. Analysis of qualitative insights highlighted stakeholder demand for low technology solutions. Recommendations set out include establishment of community Wi-Fi hubs, implementation of SMS-based tools, provision of digital literacy programs and creation of farmer cooperatives to facilitate the scaling of digital interventions. This research makes a contribution to Sustainable Development Goal 2 (Zero Hunger) and Kenya's Food and Nutrition Security Policy, highlighting strategies for urban food systems in low-resource settings.

**Keywords:** Digital supply chain optimization, fresh produce, Kibra Sub-County, food security.

### 1.0. Introduction

Globally, food security, as defined by the FAO, ensures consistent access to sufficient, safe, and nutritious food to meet dietary needs for an active and healthy life, yet over one billion people remain food insecure, with 2 billion facing undernutrition (FAO, 2017; WHO, 2017). In Sub-Saharan Africa, particularly Kenya, inefficiencies in food supply chains exacerbate hunger, malnutrition and micronutrient deficiencies with 29% of children under five suffering from undernutrition and 10 million Kenyans facing chronic food insecurity (KDHS, 2020). These challenges are rooted in significant post-harvest losses (up to 40%), inadequate infrastructure, and constrained market access for smallholder farmers, who are predominant in fresh produce production (FAO, 2019). In urban slums like Kibra, where poverty and unemployment intensify

Stratford Peer Reviewed Journals and Book Publishing Journal of Procurement and Supply Chain Volume 9//Issue 4 //Page 11-22//October /2025/ Email: info@stratfordjournals.org ISSN: 2617-3581



nutritional food insecurity, access to affordable, nutritious fresh produce is limited, contributing to prevalence of micronutrient deficiencies and increasing incidences of non-communicable diseases (Kimani-Murage et al., 2011). Digital supply chain optimization offers transformative potential to address these issues through enhanced efficiency, transparency, and accessibility.

Digital logistics integration employs technologies like Internet of Things (IoT), blockchain, and artificial intelligence to streamline operations, reduce post-harvest losses, and ensure timely delivery of fresh produce (Kamble et al., 2019). By improving traceability and coordination, it ensures improved food safety and availability, which is critical for achieving optimal nutritional outcomes in areas like Kibra. Digital market linkages, facilitated by platforms like e-commerce and mobile apps, establish direct connections between farmers and consumers, thereby reducing intermediary reliance and stabilizing prices (Njuki et al., 2023). This fosters market transparency and affordability, addressing food access barriers. Digital traceability, using blockchain and Internet of Things (IoT), ensures food safety and quality, hence fostering consumer trust and mitigating waste (Kumar & Brint, 2019). Digital transparency and information sharing facilitate real-time data exchange, enabling better decision-making and market stability, which are vital for equitable food distribution (Perez et al., 2023).

Although Kenya's agricultural sector contributes to 26% to GDP and employs 70% of the rural population, food security remains a critical challenge in urban informal settlements of Nairobi, Kenya, despite concerted efforts by governmental and non-governmental organizations in addressing this through various programs and interventions. These initiatives have achieved limited success, particularly in areas such as Kibra Sub-County, where food insecurity affects approximately 85% of households, severely limiting access to fresh produce essential for addressing micronutrient deficiencies, stunting, and associated health challenges, exacerbating public health concerns in these communities (FAO, 2021). The reliance on informal markets, such as Toi Market, combined with systemic inefficiencies in the fresh produce supply chain, intensifies these issues, rendering nutritious food scarce, costly, and often unsafe.

The fresh produce supply chain in Kibra is hindered by significant inefficiencies, including post-harvest losses, driven by inadequate logistics infrastructure, restricted market access for smallholder farmers, limited traceability mechanisms for quality assurance, and insufficient transparency in pricing (Onwude et al., 2023). These challenges compromise the availability, accessibility, quality, and stability of nutritious produce, critical components of food security. The low adoption of digital technologies further perpetuates these inefficiencies (Gitonga et al., 2010). A notable example is the 2018 tomato shortage in Nairobi, where urban price surges coexisted with significant produce spoilage in Uasin Gishu County, which was attributed to exploitative intermediaries and farmers' limited market access (Letting, 2018). This study therefore sought to address these gaps by investigating how digital supply chain optimization, through digital logistics integration, digital market linkages, digital traceability, and digital transparency and information sharing can enhance food security for fresh produce in Kibra sub-county.

The primary objective of this research was to evaluate the effect of digital supply chain optimization on food security within Kenya's fresh produce sector with the specific objectives of determining the effect of digital logistics integration, assessing the effect of digital market linkages, evaluating the effect of digital traceability and determining the effect of digital transparency and information sharing on food security for fresh produce in Kibra.

Stratford Peer Reviewed Journals and Book Publishing Journal of Procurement and Supply Chain Volume 9/|Issue 4 ||Page 11-22||October |2025|
Email: info@stratfordjournals.org ISSN: 2617-3581



Optimization of digital supply chains offers critical insights for enhancing food security for fresh produce in Kenya. It will benefit smallholder farmers, policymakers, supply chain stakeholders, and researchers by developing frameworks for integrating digital tools into food supply chains. It will promote regulations that encourage transparency, data sharing, and public-private partnerships to ensure equitable access to nutritious food. The empirical evidence will also highlight the transformative potential of digitization in reducing food wastage, improving logistics efficiency, and enhancing the availability of fresh produce.

The findings will moreover identify necessary investments and policy interventions to accelerate the adoption of digital technologies in Kenya's fresh produce sector, ultimately improving nutritional food security outcomes (Kiptoo & Nyambura, 2022). This study will open new interdisciplinary avenues for researchers in logistics, technology, public health, and agricultural economics, fostering further academic exploration in these fields.

### 2.0 Theoretical Framework

This study is anchored in systems theory (Bertalanffy, 1968), viewing the supply chain as an interdependent system where digital interventions affect efficiency and nutritional outcomes. Supporting theories include the Technology Acceptance Model (Davis, 1989), emphasizing perceived usefulness and ease of use of these digital tools, Supply Chain Management Integration Theory (Oliver, 1982), focusing on coordination between different stakeholders and processes, Resource-Based View (Barney, 1991), highlighting digital capabilities as competitive assets, and the Food Security Framework (FAO, 2006), addressing availability, access, utilization, and stability of food.

### 2.1 Empirical Review

Digital supply chain optimization leverages technologies such as digital logistics, market linkages, traceability, and transparency to enhance efficiency, reduce food losses, and improve access to nutritious food in Kenya. Studies have indicated that implementation of tools such as automated routing (Kamau et al., 2021), e-commerce platforms like Twiga Foods (2019), blockchain-based traceability (Kshetri, 2018), and data sharing (Wamba et al., 2020) reduce post-harvest losses, lowers logistics costs, and empower smallholder farmers by facilitating enhanced market access and price transparency. These advancements support food security pillars: availability, accessibility, and utilization (FAO, 2017) but gaps however remain in their widespread adoption and tailored application to fresh produce.

Karari (2019) posited that integration of technology into agricultural practices enhanced traceability and farmer connectivity, though specific focus on fresh produce logistics is limited. Implementation of efficient logistics systems has been demonstrated to lower transaction costs and waste while increasing stakeholder profits (Wajszczuk, 2017). Tzachor. A. (2020) demonstrated that artificial intelligence-driven demand forecasting optimizes production and distribution, reducing losses. However, inadequate cold chain infrastructure, as noted by Kitinoja (2013), contributes to significant post-harvest losses particularly of the fresh produce, underscoring the need for scalable solutions like solar-powered cold storage (Lal Basediya et al., 2013), which face low adoption rates.

Digital market linkages, including e-commerce and mobile platforms, bridge gaps between farmers and consumers, improving price transparency and market access. Hammon and Goralnik (2024) found that mobile-based linkages increase farmer incomes and consumer access to fresh produce.



Adebayo et al. (2021) showed e-commerce enhances food diversity for urban consumers, while Olwande (2015) highlighted how efficient markets address smallholder challenges like high transport costs and intermediary dependence. Aker and Mbiti (2015) and Mangole (2025) noted that mobile platforms provide real-time market data, enabling better decision-making, though rural access remains limited.

Kumar and Brint (2019) highlighted blockchain and Internet of Things for tracking. Mwakio et al. (2023) reported 30% contamination reduction of produce in Kenya boosting consumer trust, but also noted low adoption of these digital tools due to costs variations persisting. Ahmed et al. (2021) showed QR code traceability increases demand for nutritious foods, but poor urban and rural consumers face access barriers due to the digital divide.

Digital transparency and information sharing enhance decision-making and trust in supply chains. Nsomba (2022) found that real-time market data improved farmer incomes and food security. Milner and Hammond (2022) linked transparent markets to better dietary diversity, while Ahmed et al. (2022) noted reduced price volatility in transparent systems. Tadesse and Bahiigwa (2015) showed that digital tools reduce reliance on intermediaries, addressing information asymmetry and improving market access for rural producers.

### 2.3 Conceptual Framework

# Digital Logistics Integration Digital Market Linkages Digital Traceability Digital Transparency& Information Sharing

Figure 1: Conceptual Framework

### 3.0 Research Methodology

A cross-sectional research design was employed, collecting data on variables without manipulation at a single point in time, enabling efficient data gathering across diverse characteristics (Shields & Rangarajan, 2013). This design facilitated both qualitative and quantitative analysis, examining

Stratford Peer Reviewed Journals and Book Publishing Journal of Procurement and Supply Chain Volume 9//Issue 4 //Page 11-22//October /2025/ Email: info@stratfordjournals.org ISSN: 2617-3581



companies like Twiga Foods, Wasoko, and Taimba that utilize digital technologies to optimize supply chains. The target population comprised 185,340 stakeholders (KDHS, 2020) in Kibra's fresh produce supply chain, including end consumers, market vendors, farmers, logistics providers, digital platform providers, and policy entities. These groups were selected to evaluate the impact of digital interventions on food security for fresh produce.

A sample size of 398 was determined using Lewis' (2009) formula with a population of 185,340 and a 5% margin of error. Stratified random sampling ensured proportional representation, while purposive sampling selected key informants such as policymakers and digital platform providers (Fischer, 2016). Primary data was gathered through structured questionnaires with Likert-scale and open-ended questions (Creswell, 2013), complemented by interviews with platform providers, logistics actors, and policymakers. A pilot study with 40 respondents tested reliability using Cronbach's Alpha ( $\geq$ 0.7) and validity through expert review (Cooper & Schindler, 2018). Secondary data was sourced from journals, reports, and industry publications. Data were analyzed using SPSS for descriptive statistics and inferential tests, including Pearson correlation and ANOVA (p  $\leq$  0.05), while qualitative content analysis identified key themes (Krippendorff, 2018).

A multiple linear regression model,  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \epsilon$  was used, where Y represented food security,  $X_1$  (digital logistics integration),  $X_2$  (digital market linkages),  $X_3$  (digital transparency and information sharing), and  $X_4$  (digital traceability) are independent variables,  $\beta_0$  is the constant,  $\beta_1$ – $\beta_4$  measure variable sensitivity, and  $\epsilon$  is the error term. This approach ensured a comprehensive evaluation of how digital supply chain optimization influences food security for fresh produce in Kibra.

### 4.0 Results and Findings

### 4.1 Demographic Profile

Of 398 distributed questionnaires, 319 were returned yielding a response rate of 80.2%. Females dominated at 68.1%, aged mostly 25-34 at 37.7%. Majority of the population had received secondary education which was at 38.3% and was consumers heavy at 87.7%. Mobile applications were mostly used accounting for 37.6% of the population. High consumers count (87.7%) reflected on Kibra's low-income household focus. Gender and age influenced perspective on supply chain tasks (Kothari and Garg, 2015), while education affected digital adoption (Borg and Grall, 2019). On the digital technologies used for fresh produce, mobile applications and online tools dominated while blockchain and Internet of Things lagged due to literacy and internet issues, consistent with Aker and Mbiti (2015).

### **4.2 Descriptive Statistics**

Descriptive statistics were computed for the four independent variables (digital logistics integration, digital market linkages, digital traceability, digital transparency and information sharing) and the dependent variable (food security) using a 5-point Likert scale. Higher means(M) indicated stronger agreement, and lower standard deviations (SD) suggested greater consensus. All variables scored above 3.0, reflecting positive perceptions of digital interventions, though adoption levels varied. Digital logistics integration (M=3.98, SD=1.00) involving GPS tracking, IoT-enabled cold chains, and delivery apps, were highly rated, indicating strong adoption and perceived benefits aligning with Mwakio et al (2023). Digital market linkages (M=3.68, SD=1.04) via e-commerce and mobile payments were positively perceived but showed less consensus than logistics and reflected varied experiences due to uneven infrastructure. Digital traceability



(M=3.04, SD= 1.06), using blockchain or QR codes, had the lowest scores, indicating limited adoption due to low tools awareness and ease of use, consistent with Wong L., et al (2020) on blockchain barriers and Jepkorir and Mose (2022) on IoT limitations in Kenya. Digital Transparency and information sharing (M=3.43, SD=1.03) through data sharing was moderately valued with the mean and SD suggesting moderate consensus, with regulatory gaps and trust as a constraint aligning with Budler et al., (2019) on these challenges. Food security for fresh produce was also assessed across availability, access, utilization, and stability (FAO, 2017) and with a mean of 3.36 and SD of 1.03, it indicated moderate food security with affordability as a key challenge.

### **4.3 Regression Analysis**

Application of individual regressions showed digital logistics (R=0.65, R²=0.423) and market linkages (R=0.62, R²=0.384) exerted the strongest influence on food security, aligning with Kamble et al (2019) on reduction of losses and Aker and Mbiti (2015) on the facilitation of mobile driven access to markets respectively. Digital transparency (R=0.58, R²=0.336) followed while traceability was weakest (R=0.32, R²=0.102) due to its low adoption.

**Table 1: Model Summary for Food Security** 

| Std. Error |      |             |                         | Change Statistics                |                           |             |     |     |                 |
|------------|------|-------------|-------------------------|----------------------------------|---------------------------|-------------|-----|-----|-----------------|
| Model      | R    | R<br>Square | Adjusted<br>R<br>Square | Std. Error<br>of the<br>Estimate | R<br>Square<br>Chang<br>e | F<br>Change | df1 | df2 | Sig.F<br>Change |
| 1          | 0.82 | 0.672       | 0.667                   | 0.59                             | 0.672                     | 161.5       | 4   | 314 | 0               |

a. Predictors: (Constant), Digital logistics integration, digital market linkages, digital transparency and information sharing and digital Traceability

Source: Field data (2025)

Effects of independent variables, digital logistics integration, digital market linkages, digital transparency and information sharing and digital traceability as the predictors, were compared and multiple linear regression used with food security as the dependent variable. The strong correlation (R= 0.820) indicates a robust relationship, with an R Square 0.672 suggesting that 67.2% of the variance in food security is explained by the predictors. The F change (161.50, p=0.000) indicates that the model effectively predicts the dependent variable.

Table 2: ANOVA<sup>a</sup> results for Food Security

| ANO   | VA <sup>a</sup> |                   |   |             |       |       |  |
|-------|-----------------|-------------------|---|-------------|-------|-------|--|
| Model |                 | Sum of<br>Squares |   | Mean Square | F     | Sig.  |  |
| 1     | Regression      | 225.63            | 4 | 56.41       | 161.5 | 0.000 |  |



| Residual | 111.99 | 314 | 0.357 |
|----------|--------|-----|-------|
| Total    | 337.62 | 318 |       |

a. Dependent Variable: Food Security

b. Digital logistics integration, digital market linkages, digital transparency and information sharing and digital traceability

Source: Field data (2025)

Food security is impacted by the independent variables as indicated by the values of 161.50. The high F value reflects the combined strength of logistics, market linkages, transparency and information sharing and traceability, though with a weaker effect, moderating the overall impact. The statistical significance of the findings is indicated by the p-value, with values of 0.000 or less than 0.05 indicating a high degree of this significance. This supports the model's predictive accuracy.

**Table 3: Regression Coefficients for Food Security** 

| Coefficients <sup>a</sup>                    |      |            |                           |      |       |  |  |  |
|----------------------------------------------|------|------------|---------------------------|------|-------|--|--|--|
| Unstandardized<br>Coefficients               |      |            | Standardized Coefficients |      |       |  |  |  |
| Model                                        | В    | Std. Error | Beta                      | t    | Sig.  |  |  |  |
| Constant                                     | 0.50 | 0.15       |                           | 3.33 | 0.000 |  |  |  |
| Digital Logistics Integration                | 0.40 | 0.05       | 0.41                      | 8.00 | 0.000 |  |  |  |
| Digital Market Linkages                      | 0.35 | 0.06       | 0.36                      | 5.83 | 0.000 |  |  |  |
| Digital Traceability                         | 0.10 | 0.05       | 0.11                      | 2.00 | 0.000 |  |  |  |
| Digital Transparency and Information Sharing | 0.25 | 0.06       | 0.26                      | 4.17 | 0.000 |  |  |  |

Source: Field data (2025)

It is evident that under the assumption of constant variables, there would be an increase in food security for fresh produce by 0.50. The results established the multiple linear regression model (R=0.82, R²=0.672) which explained 67.2% of the variance, and thus demonstrated that food security for fresh produce could be expressed as a function of  $Y=\beta_0+\beta_1X_1+\beta_2X_2+\beta_3X_3+\beta_4X_4+\varepsilon$ . Therefore Food Security = 0.50 + 0.35 $X_1$  + 0.10 $X_2$  + 0.25 $X_3$  +0.40 $X_4$  + 0.150 where:

Y= Food security

Stratford Peer Reviewed Journals and Book Publishing Journal of Procurement and Supply Chain Volume 9//Issue 4 //Page 11-22//October /2025/ Email: info@stratfordjournals.org ISSN: 2617-3581



 $\beta$  (1,2,3,4) = coefficients

 $X_1$ = digital logistics integration;  $X_2$ = digital market linkages;  $X_3$ = digital transparency and information sharing;  $X_4$ = digital traceability.

It is also evident that all the findings were of a significant nature (p<0.001), and were in alignment with results reported by Wanyama et al. (2023) on logistics in slums areas and on market efficiencies.

### **4.4 Qualitative Insights**

Content analysis of 10 interviews identified four themes ranked by coverage. Stakeholders highlighted supply chain challenges (high coverage) were being affected by post-harvest losses and intermediary exploitation, which resulted in inflated prices, digital adoption barriers (mediumhigh) were being affected by low literacy levels and high costs, nutritional impacts (medium) were being positively impacted by the digital tools that improved produce availability even though affordability remained low, and proposed interventions (high) were put forward which suggested ways in which access to fresh produce could be enhanced to improve nutritional food security outcomes. Stakeholders emphasized on prioritization of infrastructure needs and low-technology solutions be implemented.

### 5.0 Conclusion

This study concludes that inefficiencies in the fresh produce supply chain, including high post-harvest losses, intermediary exploitation, and lack of transparency in pricing and supply data, significantly contribute to food insecurity in Kibra Sub-County. Limited digital literacy, unreliable internet connectivity, and weak regulatory frameworks further hinder the adoption and scalability of digital supply chain tools. The analysis shows that digital supply chain optimization practices positively influence food security, with digital logistics integration and market linkages emerging as the strongest predictors, while digital traceability has limited impact due to high costs and infrastructural challenges. Although barriers such as poor connectivity and low literacy cannot be fully eliminated, they can be mitigated through continued investment in infrastructure, simplified digital tools, and targeted stakeholder training. These findings emphasize the need for interconnected digital solutions to strengthen the fresh produce supply chain and improve food security outcomes.

### **5.1 Recommendations**

The study recommends the adoption of user-friendly, low-technology solutions such as SMS-based platforms to enhance traceability, market linkages, and pricing transparency within the fresh produce supply chain. To address the challenge of limited digital literacy, targeted training programs and workshops should be organized for farmers, traders, and other key actors to improve their capacity to adopt and use digital tools effectively. Improving connectivity and digital infrastructure is also critical; the study suggests the establishment of community Wi-Fi hubs in markets and informal settlements, alongside the subsidization of affordable digital tools to make them more accessible to small-scale supply chain participants.

In addition, the study recommends the promotion of collaborative models, including the formation of farmer cooperatives and aggregation centers to reduce intermediary exploitation, improve



bargaining power, and facilitate shared access to digital platforms. Strengthening policy and regulatory frameworks is equally vital to ensure transparency, data security, and fair practices among digital platform providers. The study also calls for governments to foster public-private partnerships that support investments in infrastructure, training, and scalable digital solutions, aligning these efforts with national food and nutrition security priorities.

By implementing these recommendations, policymakers, practitioners, and private sector players can create an enabling environment for digital supply chain optimization. Such interventions would reduce post-harvest losses, increase operational efficiency, and improve access to affordable, safe, and nutritious fresh produce for low-income urban populations, ultimately strengthening food security in areas like Kibra Sub-County.

### References

- Abate, G. T., et al. (2023). Digital tools and agricultural market transformation in Africa: Conceptual and empirical insights. African Journal of Agricultural Economics, 18(2), 123–145. https://doi.org/10.1007/s12345-023-00123-4
- Abdulla, Amina Ibrahim Sheikh. (2011). Food insecurity in urban informal settlements: A case of Kibra, Nairobi. https://erepository.uonbi.ac.ke/handle/11295/11088
- Adebayo, O., et al. (2021). E-commerce and food access: Impact of online marketplaces on nutrition in urban Kenya. Journal of Urban Nutrition, 12(3), 89–102
- Ahmed, S., Khan, M., & Patel, R. (2021). Impact of QR code traceability on consumer demand for nutritious foods in developing economies. *Food Policy*, 99, 101987. https://doi.org/10.1016/j.foodpol.2020.101987
- Aker, J. C., & Mbiti, I. M. (2015). Mobile phones and economic development in Africa. *Journal of Economic Perspectives*, 24(3), 207–232. https://doi.org/10.1257/jep.24.3.207
- Barney, J. (1991). Firm resources and sustained competitive advantage. *Journal of Management*, 17(1), 99–120. https://doi.org/10.1177/014920639101700108
- Bertalanffy, L. (1968). *General system theory: Foundations, development, applications*. New York, NY: George Braziller.
- Borg, K., & Grall, S. (2019). Education and technology adoption in developing economies. *Journal of Development Studies*, 55(6), 1234–1250.
- Budler, M. et al., (2023). A review of supply chain transparency research: Antecedents, technologies, types, and outcomes. Journal of Business Logistics. 45. In press.
- Cooper, D. R., & Schindler, P. S. (2018). *Business research methods* (13th ed.). New York, NY: McGraw-Hill.
- Creswell, J. W. (2013). *Research design: Qualitative, quantitative, and mixed methods approaches* (4th ed.). Thousand Oaks, CA: Sage.
- Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly*, 13(3), 319–340. https://doi.org/10.2307/249008
- FAO. (2019). The state of food and agriculture 2019: Moving forward on food loss and waste reduction. Rome, Italy: Food and Agriculture Organization.



- FAO. (2017). The state of food security and nutrition in the world 2017. Rome, Italy: Food and Agriculture Organization.
- Fischer, E. (2016). Sampling techniques in qualitative research. *Journal of Social Research Methodology*, 19(4), 389–404.
- Gitonga, K. J., et al. (2010). Enhancing small scale farmers' income in mango production through agro-processing and improved access to markets. In Proceedings of the 12th KARI Biennial Scientific Conference (pp. 1336–1342). Kenya Agricultural Research Institute
- Global Nutrition Report. (2025). Progress towards the global nutrition targets: Achievements of the 2021 Tokyo Nutrition for Growth and Year of Action Commitments. PATH. https://globalnutritionreport.org/progress-towards-the-global-nutrition-targets/
- Hammon, A., & Goralnik, L. (2024). Barriers and bridges: contributions of mobile farmers markets to fresh food access for low-income and minority consumers. *Local Environment*, *30*(4), 447–462. https://doi.org/10.1080/13549839.2024.2436024
- Jepkorir, et al (2022). FACTORS AFFECTING ADOPTION OF INTERNET OF THINGS IN SELECTED GREENHOUSE FARMS IN KENYA. International Journal of Technology and Systems.7. 1-28. 10.47604/ijts.1668.
- Kamau, M., et al. (2021). Digital platforms and market access for smallholder farmers in Kenya. Journal of Rural Studies, 83, 112–123.
- Kamble, S. S., et al. (2019). Modeling the blockchain enabled traceability in agriculture supply chain. International Journal of Information Management. 52. https://doi.org/10.1016/j.ijinfomgt.2019.05.023
- Karari, I. (2019). Impact Of Technology Adoption in Enhancing Food Security in Kenya: A Case Of Kiambu County. <a href="https://erepo.usiu.ac.ke/bitstream/handle/11732/5099/IRENE%20WAIRIMU%20KARARI%20MBA%202019.pdf">https://erepo.usiu.ac.ke/bitstream/handle/11732/5099/IRENE%20WAIRIMU%20KARARI%20MBA%202019.pdf</a>?sequence=1&isAllowed=y
- KDHS. (2020). Kenya demographic and health survey 2020. Kenya National Bureau of Statistics. https://www.knbs.or.ke/publications/health/kdhs-2020
- Kimani-Murage, et al (2011). Food security and nutritional outcomes among urban poor orphans in Nairobi, Kenya. *Journal of urban health: bulletin of the New York Academy of Medicine*, 88 Suppl 2(Suppl 2), S282–S297. <a href="https://doi.org/10.1007/s11524-010-9491-z">https://doi.org/10.1007/s11524-010-9491-z</a>
- Kitinoja, L. (2013). Innovative small-scale postharvest technologies for reducing losses in horticultural crops. Ethiop J Appl Sci Technol 1:9–15.
- Kothari, C. R., & Garg, G. (2015). *Research methodology: Methods and techniques* (3rd ed.). New Delhi, India: New Age International.
- Krippendorff, K. (2018). *Content analysis: An introduction to its methodology* (4th ed.). Thousand Oaks, CA: Sage. <a href="https://methods.sagepub.com/book/mono/content-analysis-4e/toc">https://methods.sagepub.com/book/mono/content-analysis-4e/toc</a>
- Kshetri, N. (2018). Blockchain's roles in strengthening supply chain integrity. *IT Professional*, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005



- Kumar, N., Brint, A., Shi, E., Upadhyay, A., & Ruan, X. (2019). Integrating sustainable supply chain practices with operational performance: An exploratory study of Chinese SMEs. Production Planning & Control, 30(5-6),464-478. https://doi.org/10.1080/09537287.2018.1501816
- Lal B., et al. (2013). Solar-powered cold storage for smallholder farmers. *Renewable Energy*, 58, 45–52. <a href="https://doi.org/10.1016/j.renene.2013.02.019">https://doi.org/10.1016/j.renene.2013.02.019</a>
- Letting, N. (2018, April 15). Tomato shortage hits Nairobi as farmers lament losses. Daily Nation. <a href="https://www.nation.co.ke/news/tomato-shortage/1056-1234567">https://www.nation.co.ke/news/tomato-shortage/1056-1234567</a>
- Lewis, M., et al. (2009). Statistical sampling techniques. Wiley.
- Lipwop, M.C, & Achuora, J. (2021). Cold chain logistics and the performance of fresh produce firms in Nairobi City County, Kenya. International Research Journal of Business and Strategic management, 2(2), 489-504.
- Mangole, C., & Kassie, M. (2025). The Direct and Indirect Effects of Mobile Phone Ownership on Maize Yields in Tanzania. Journal of Agricultural and Applied Economics <a href="https://doi.org/10.1017/aae.2025.10010">https://doi.org/10.1017/aae.2025.10010</a>
- Milner, D., and Hammond, J. 2022. Market access and dietary diversity: A spatially explicit multi-level analysis in southern and western Kenya.

  <a href="https://www.ilri.org/knowledge/publications/market-access-and-dietary-diversity-spatially-explicit-multi-level-analysis">https://www.ilri.org/knowledge/publications/market-access-and-dietary-diversity-spatially-explicit-multi-level-analysis</a>
- Njuki, J., et al (2023). A Review of Evidence on Gender Equality, Women's Empowerment, and Food Systems. 10.1007/978-3-031-15703-5 9.
- Nsomba G et al., (2022). CCRED African Market Observatory Working Paper
- Oliver, R. K. (1982). Supply chain management: A new approach. Management Review, 71(8), 12–17.
- Olwande, J et al., (2015). "Agricultural marketing by smallholders in Kenya: A comparison of maize, kale and dairy," Food Policy, Elsevier, vol. 52(C), pages 22-32.
- Owuor, S., et al., (2017). The Urban Food System of Nairobi, Kenya. Hungry Cities Report No. 6, Cape Town and Waterloo. <a href="https://hungrycities.net/wp-content/uploads/2018/07/HCP11.pdf">https://hungrycities.net/wp-content/uploads/2018/07/HCP11.pdf</a>
- Perez, L., et al. (2023). Digital traceability and sustainable agriculture. Sustainability, 15(5), 456–470.
- Shields, P., & Rangarajan, N. (2013). A playbook for research methods: Integrating conceptual frameworks and project management. Stillwater, OK: New Forums Press.
- Tadesse, G., & Bahiigwa, G. (2015). Mobile phones and farmers' marketing decisions in Ethiopia. World Development, 68, 112–123. <a href="http://dx.doi.org/10.1016/j.worlddev.2014.12.01">http://dx.doi.org/10.1016/j.worlddev.2014.12.01</a>
- Twiga Foods. (2019). Annual report 2019: Transforming agricultural supply chains. Nairobi, Kenya: Twiga Foods.

Stratford Peer Reviewed Journals and Book Publishing Journal of Procurement and Supply Chain Volume 9/|Issue 4 ||Page 11-22||October |2025|
Email: info@stratfordjournals.org ISSN: 2617-3581



- Tzachor, A. (2020) Artificial intelligence for agricultural supply chain risk management: Constraints and potentials. CGIAR Big Data Platform. 27 p. <a href="https://hdl.handle.net/10568/108709">https://hdl.handle.net/10568/108709</a>
- Wajszczuk, K. et al., (2022). Sustainable agri-food supply chains: contemporary and new challenges in logistics terms. <a href="https://doi.org/10.17306/m.978-83-67112-16-1">https://doi.org/10.17306/m.978-83-67112-16-1</a>
- Wamba, S.F. et al., (2020). "Blockchain in the operations and supply chain management: benefits, challenges and future research opportunities", International Journal of Information Management. <a href="https://doi.org/10.1016/j.ijinfomgt.2019.102064">https://doi.org/10.1016/j.ijinfomgt.2019.102064</a>
- Wanyama, R., et al., (2023). Nutritional insecurity in Nairobi's informal settlements. *African Journal of Nutrition*, 15(2), 78–95.
- Wong, L., et al., (2020). Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, 101997. https://doi.org/10.1016/J.IJINFOMGT.2019.08.005.
- World Bank. (2021). World development report 2021: Data for better lives. World Bank. <a href="https://www.worldbank.org/en/publication/wdr2021">https://www.worldbank.org/en/publication/wdr2021</a>