

Journal of Education

ISSN Online: 2616-8383

Measuring Interactivity, Collaboration, Critical Thinking, and Active Engagement in Smart Classroom Learning: A Mixed-Methods Study in Secondary Education

¹Maurice Turinumukiza, ²Dr. Paul Ssemaluulu, ³Dr. Mubaraka Conrad Mike & ⁴Assoc. Prof. Businge Phelix Mbabazi

ISSN: 2616-8383

Measuring Interactivity, Collaboration, Critical Thinking, and Active Engagement in Smart Classroom Learning: A Mixed-Methods Study in Secondary Education

¹Maurice Turinumukiza, ²Dr. Paul Ssemaluulu, ³Dr. Mubaraka Conrad Mike &
⁴Assoc. Prof. Businge Phelix Mbabazi

¹tzamaurix@gmail.com, University of Kigali, Rwanda, ²pssemaluulu@kab.ac.ug, Kabale University, Uganda, ³cmubaraka@kab.ac.ug, Kabale University, Uganda,
⁴pmbusinge@kab.ac.ug, Kabale University, Uganda

How to cite this article: Turinumukiza, M., Ssemaluulu, P., Mubarak, C. M. & Mbabazi, B. P. (2026). Measuring Interactivity, Collaboration, Critical Thinking, and Active Engagement in Smart Classroom Learning: A Mixed-Methods Study in Secondary Education. *Journal of Education*, 9 (1), 1-13. <https://doi.org/10.53819/81018102t5409>

Abstract

This study investigated interactivity, collaboration, critical thinking, and active engagement in smart classroom learning in secondary education, responding to persistent gaps in learner-centered evaluations of educational technology. The study was guided by two objectives: (i) to assess the levels of interactivity, collaboration, critical thinking, and active engagement experienced by students in smart classroom environments, and (ii) to examine the relationships among these learning outcomes. An explanatory sequential mixed-methods approach was employed. A total of 318 participants were involved, including 175 Senior Three students who completed a structured questionnaire and 143 Senior Six science students who participated in focus group discussions, alongside teachers, school leaders, parents, and a district education official. Students were selected using stratified random sampling, while other participants were purposively selected based on their roles in smart classroom implementation. Quantitative data were analyzed using descriptive statistics and Pearson correlation analysis, while qualitative data from interviews, focus groups, and classroom observations were thematically analyzed to explain the quantitative patterns. The findings reveal that smart classroom learning is associated with moderate interactivity and active engagement, weak collaboration, and uneven development of critical thinking skills. Active engagement was strongly associated with collaboration and critical thinking, indicating that deeper engagement emerges when smart classroom practices emphasize peer interaction and cognitively demanding tasks rather than presentation-based technology use. The study concludes that the effectiveness of smart classrooms depends primarily on pedagogical integration rather than technological availability alone and recommends strengthening instructional design, teacher professional development, and institutional support to promote collaborative and inquiry-based learning.

Keywords: Smart classrooms; Interactivity; Collaboration; Critical thinking; Active engagement

1.0 Introduction

The purpose of this study is to examine interactivity, collaboration, critical thinking, and active engagement in smart classroom learning in secondary education in order to address persistent gaps in existing research on technology-enhanced instruction. Smart classrooms are increasingly promoted as learning environments capable of transforming traditional pedagogy through the integration of digital devices, multimedia resources, and interactive systems designed to support learner-centered instruction (Kinshuk et al., 2016; UNESCO, 2022). Despite substantial investments in educational technology worldwide, evidence remains mixed regarding whether smart classroom adoption consistently translates into meaningful learning processes and outcomes for students.

Although previous studies have examined the availability of digital infrastructure, teacher digital competence, and institutional readiness for information and communication technology integration, comparatively limited attention has been given to students' observable learning behaviors within smart classroom environments (Kozma, 2003; Tondeur et al., 2017; Mushimiyimana, 2021). In many contexts, technology use is still evaluated in terms of access and usage frequency rather than its pedagogical impact on how students learn. As a result, there is insufficient empirical documentation on whether smart classroom practices foster interactive participation, collaborative learning, higher-order thinking, and sustained engagement during classroom instruction, particularly in public secondary schools within developing education systems (Garrison et al., 2000; Ngendahayo et al., 2024).

This paper builds on earlier research by shifting the analytical focus from technology provision to learner-centered outcomes as indicators of effective smart classroom utilization. Interactivity reflects the degree to which students actively engage with teachers, peers, and digital content during instruction. Collaboration captures students' participation in shared learning activities supported by technology. Critical thinking refers to learners' ability to analyze problems, evaluate alternative solutions, and apply knowledge meaningfully. Active engagement encompasses students' sustained attention, motivation, participation, and emotional involvement in learning activities. Together, these dimensions provide a comprehensive framework for evaluating whether smart classrooms support deep and meaningful learning rather than superficial technology use.

The study adopts a mixed-methods approach to capture both the measurable patterns and contextual dynamics of smart classroom learning. Quantitative data were collected from secondary school students to assess item-level and construct-level perceptions across the four learning dimensions, while qualitative data were obtained through focus group discussions, interviews with teachers, school leaders, parents, and district education officials, as well as classroom observations. This design responds to calls for integrative methodologies capable of linking statistical trends with lived classroom experiences, particularly in contexts where technology adoption outpaces pedagogical transformation (Creswell & Creswell, 2018; UNESCO, 2019).

The study is guided by the following research question: To what extent do smart classroom learning environments promote interactivity, collaboration, critical thinking, and active engagement among secondary school students? Addressing this question aligns with constructivist and socio-cognitive learning theories, which emphasize that meaningful learning occurs when

<https://doi.org/10.53819/81018102t5409>

learners actively interact with content, collaborate with others, and engage in reflective and higher-order thinking within supportive instructional environments (Vygotsky, 1978; Garrison et al., 2000).

The importance of this research lies in providing robust empirical evidence on how smart classrooms function in practice and the conditions under which they enhance or constrain meaningful learning. By foregrounding learner behaviors and experiences, the study contributes to a more nuanced understanding of technology-enhanced learning beyond access-based evaluations. The findings offer actionable insights for teachers seeking to design interactive and engaging digital lessons, for school leaders responsible for supporting smart classroom implementation, and for policymakers aiming to optimize the educational returns of investments in digital infrastructure. In doing so, the study advances evidence-based discourse on smart classroom effectiveness in secondary education and contributes to broader efforts to improve learning quality through educational technology.

2.0 Literature Review

Previous research has shown that the integration of digital technologies into classroom instruction has the potential to enhance learning processes by promoting interactivity, collaboration, critical thinking, and student engagement. Studies on smart classrooms and technology-enhanced learning environments suggest that digital tools, when pedagogically integrated, can support learner-centered instruction, facilitate communication, and enable active knowledge construction (Kozma, 2003; Kinshuk et al., 2016; UNESCO, 2022). However, despite these reported benefits, findings across different educational contexts remain inconsistent.

Several studies have suggested that smart classroom technologies positively influence interactivity and engagement by enabling multimedia instruction, real-time feedback, and interactive discussions between teachers and learners (Garrison, Anderson, & Archer, 2000; Tondeur et al., 2017). Research has also indicated that technology-supported learning can foster collaboration through group tasks, shared digital resources, and peer-to-peer interaction, particularly when collaborative pedagogical strategies are intentionally applied (Bergmann & Sams, 2012; Ngendahayo et al., 2024). Furthermore, some empirical studies report improvements in students' critical thinking and problem-solving skills when digital tools are used to support inquiry-based and reflective learning activities.

In contrast, other studies have reported limited or mixed effects of smart classroom adoption on learning outcomes. These studies argue that the mere presence of digital infrastructure does not automatically translate into improved learning, especially when instruction remains teacher-centered or when educators lack adequate pedagogical and technical preparation (Barasa, 2021; Mushimiyimana, 2021). Weak institutional support, unreliable infrastructure, and limited access to continuous professional development have also been identified as major constraints that reduce the effectiveness of smart classroom initiatives in many developing and rural educational contexts.

The majority of existing literature has focused on technology availability, infrastructure provision, teacher digital competence, and policy frameworks for ICT integration in schools. While this body of research provides important insights into readiness and access, it often evaluates technology

adoption as an endpoint rather than examining how smart classroom practices shape students' actual learning behaviors (Kozma, 2003; UNESCO, 2019). Consequently, learner-centered outcomes such as interactivity, collaboration, critical thinking, and active engagement have received comparatively less empirical attention, particularly within secondary school classrooms where learning demands are more cognitively complex.

Recent studies have highlighted the need for further investigation into how smart classroom use translates into meaningful pedagogical practices and observable learner outcomes. Scholars increasingly emphasize that the effectiveness of educational technology should be assessed through its impact on student participation, collaborative learning, cognitive engagement, and sustained involvement rather than through access-based indicators alone (Kinshuk et al., 2016; World Bank, 2023). In addition, there is growing recognition of the value of mixed-methods approaches that combine quantitative measurement with qualitative inquiry to explain contextual variations in technology use and learning experiences, especially in under-researched secondary education settings (Creswell & Creswell, 2018).

This review synthesizes key findings from prior research and identifies a clear research gap addressed by the present study. Although existing studies acknowledge the potential of smart classrooms, there is limited empirical evidence that systematically examines interactivity, collaboration, critical thinking, and active engagement as integrated learning outcomes within a single analytical framework. Moreover, few studies employ mixed-methods designs that link item-level quantitative evidence with qualitative insights to explain how and why these learning behaviors emerge in real classroom contexts. The present study responds to this gap by providing a comprehensive mixed-methods evaluation of these four learner-centered dimensions in secondary education, thereby contributing to a more nuanced and practice-oriented understanding of smart classroom learning.

3.0 Methodology

This study adopted an explanatory sequential mixed-methods approach to examine interactivity, collaboration, critical thinking, and active engagement in smart classroom learning in secondary education. This design was selected to allow quantitative measurement of learner-centered outcomes to be followed by qualitative inquiry aimed at explaining and contextualizing the observed statistical patterns. The approach is particularly suitable for educational technology research, where learning outcomes are shaped by both measurable student behaviors and contextual instructional practices.

Data were collected using multiple complementary methods. Quantitative data were obtained through a structured student questionnaire designed to capture item-level and construct-level perceptions of interactivity, collaboration, critical thinking, and active engagement in smart classroom settings. Qualitative data were collected through focus group discussions with senior students, semi-structured interviews with teachers, school leaders, parents, and the District Director of Education, as well as non-participant classroom observations. The use of multiple data sources enabled methodological triangulation and enhanced the credibility and explanatory power of the findings.

The study sample consisted of 318 participants drawn from public secondary schools equipped with smart classroom facilities. These included 175 Senior Three students who completed the questionnaire, 143 Senior Six science students who participated in focus group discussions, 22 teachers, 5 head teachers, 12 parents, and 1 District Director of Education. Students were selected using stratified random sampling to ensure proportional representation across participating schools and grade levels. Teachers, school leaders, parents, and the district official were selected using purposive sampling based on their direct involvement in smart classroom implementation, instructional delivery, or policy oversight. This combination of sampling techniques ensured both statistical representativeness and rich contextual insight.

All study variables were defined and operationalized using established constructs in educational technology and learning sciences. Interactivity was defined as the extent of learner-teacher and learner-learner interaction facilitated by digital tools during instruction. Collaboration referred to students' participation in shared learning activities supported by technology. Critical thinking captured learners' ability to analyze problems, evaluate alternative solutions, and apply knowledge meaningfully. Active engagement represented sustained attention, motivation, participation, and emotional involvement in learning activities. These constructs were measured using a five-point Likert scale adapted from validated digital learning and engagement instruments and contextualized to reflect secondary school smart classroom environments.

Quantitative data were analyzed using SPSS (Version 26). Descriptive statistics, including frequencies, percentages, means, and standard deviations, were computed to summarize item-level and construct-level responses. Pearson correlation analysis was conducted to examine relationships among interactivity, collaboration, critical thinking, and active engagement. Multiple linear regression analysis was used to assess the predictive contribution of interactivity, collaboration, and critical thinking to active engagement, while logistic regression analysis was employed as a robustness check to examine the likelihood of high smart classroom utilization. All statistical tests were conducted at the 95% confidence level ($p < .05$).

Qualitative data were transcribed verbatim and analyzed thematically using an inductive-deductive coding approach. Initial codes were generated from the study's conceptual framework and refined through iterative reading of the data. Emerging themes were compared across respondent groups and integrated with quantitative findings at the interpretation stage. This integration strengthened explanatory depth and ensured that statistical results were grounded in actual classroom experiences and institutional contexts.

4.0 Results

The results were presented in sections.

4.1 Response Rate and Analytical Sample

Quantitative data were obtained from 175 Senior Three students, representing a response rate of 94.6 percent. This response rate is considered adequate for statistical analysis in survey based educational research. The qualitative phase involved 143 Senior Six science students who participated in focus group discussions, yielding full participation.

This Results section reports item level quantitative findings for four smart classroom learning outcomes, namely interactivity, collaboration, critical thinking, and active engagement. Qualitative evidence is used to explain and contextualize the quantitative patterns in accordance with the explanatory sequential mixed methods design.

4.2 Interactivity in Smart Classroom Learning

Item level responses on interactivity are presented in Table 1. The results indicate moderate but uneven use of smart classroom technologies. As shown in Table 1, students reported comparatively higher agreement on items related to increased lesson interest and motivation when digital tools were used. In contrast, lower agreement was observed for items reflecting student-initiated interaction, such as asking or answering questions through smart classroom platforms and engaging with interactive tools beyond basic projection. These results suggest that interactivity was largely teacher directed, with limited opportunities for learners to actively control or manipulate digital technologies during lessons.

Table 1: Item-Level Student Ratings on Interactivity (N = 175)

Statements	SD	D	N	A	SA	Total
I actively participate in interactive lessons using smart tools.	18 (10.3%)	34 (19.4%)	55 (31.4%)	44 (25.1%)	24 (13.7%)	175 (100%)
Teachers use digital tools to improve discussions in class.	15 (8.6%)	32 (18.3%)	58 (33.1%)	47 (26.9%)	23 (13.1%)	175 (100%)
I ask or answer questions using smart classroom platforms.	20 (11.4%)	38 (21.7%)	50 (28.6%)	42 (24.0%)	25 (14.3%)	175 (100%)
Interactive applications make lessons more interesting for me.	17 (9.7%)	36 (20.6%)	48 (27.4%)	45 (25.7%)	29 (16.6%)	175 (100%)
Teachers use projectors or smart boards to involve students in class.	22 (12.6%)	40 (22.9%)	46 (26.3%)	42 (24.0%)	25 (14.3%)	175 (100%)
I feel motivated to interact when we use smart classroom tools.	19 (10.9%)	35 (20.0%)	51 (29.1%)	44 (25.1%)	26 (14.9%)	175 (100%)

Note. SD = Strongly Disagree, D = Disagree, N = Neutral, A = Agree, SA = Strongly Agree. Percentages are based on N = 175.

Source: Field data (2025).

4.3 Collaboration in Smart Classroom Learning

Item level findings on collaboration are summarized in Table 2. As shown in Table 2, collaboration emerged as the weakest learning outcome across all measured items. Most students reported limited engagement in technology supported group work, low levels of teacher encouragement for digital teamwork, and infrequent sharing of learning resources through smart classroom platforms. Even where peer learning was acknowledged, agreement levels remained relatively low, indicating that collaborative learning practices were not systematically embedded in smart classroom instruction.

Table 2: Item-Level Student Ratings on Collaboration (N = 175)

Statements	SD	D	N	A	SA	Total
I often work with classmates in groups using smart classroom technology.	30 (17.1%)	66 (37.7%)	47 (26.9%)	22 (12.6%)	10 (5.7%)	175 (100%)
Teachers encourage us to work together using digital tools.	28 (16.0%)	64 (36.6%)	49 (28.0%)	24 (13.7%)	10 (5.7%)	175 (100%)
I share resources (files, presentations) with classmates using technology.	32 (18.3%)	62 (35.4%)	46 (26.3%)	23 (13.1%)	12 (6.9%)	175 (100%)
The smart classroom helps me learn from my peers.	27 (15.4%)	61 (34.9%)	49 (28.0%)	26 (14.9%)	12 (6.9%)	175 (100%)
Technology makes group projects easier and more effective.	26 (14.9%)	58 (33.1%)	48 (27.4%)	29 (16.6%)	14 (8.0%)	175 (100%)

Note. SD = Strongly Disagree, D = Disagree, N = Neutral, A = Agree, SA = Strongly Agree. Percentages are based on N = 175.

Source: Field data (2025).

4.4 Critical Thinking in Smart Classroom Learning

Results for critical thinking are presented in Table 3. The findings reveal mixed but moderately positive perceptions. As indicated in Table 3, higher agreement was observed for items related to applying learning to real life situations and thinking independently. However, lower agreement was reported for items focusing on analytical problem solving, structured inquiry, and systematic reasoning supported by digital tools. These results indicate that opportunities for critical thinking in smart classroom learning were present but inconsistent across lessons.

Table 3: Item-Level Student Ratings on Critical Thinking (N = 175)

Statements	SD	D	N	A	SA	Total
Smart classroom tools help me analyze problems critically.	22 (12.6%)	44 (25.1%)	49 (28.0%)	37 (21.1%)	23 (13.1%)	175 (100%)
I use digital tools to explore different solutions in learning.	18 (10.3%)	40 (22.9%)	46 (26.3%)	45 (25.7%)	26 (14.9%)	175 (100%)
Teachers give activities that help me solve problems using technology.	20 (11.4%)	42 (24.0%)	47 (26.9%)	43 (24.6%)	23 (13.1%)	175 (100%)
I can apply what I learn in smart classrooms to real-life situations.	16 (9.1%)	39 (22.3%)	45 (25.7%)	46 (26.3%)	29 (16.6%)	175 (100%)
Smart classroom lessons encourage me to think independently.	17 (9.7%)	41 (23.4%)	44 (25.1%)	46 (26.3%)	27 (15.4%)	175 (100%)

Note. SD = Strongly Disagree, D = Disagree, N = Neutral, A = Agree, SA = Strongly Agree. Percentages are based on N = 175.

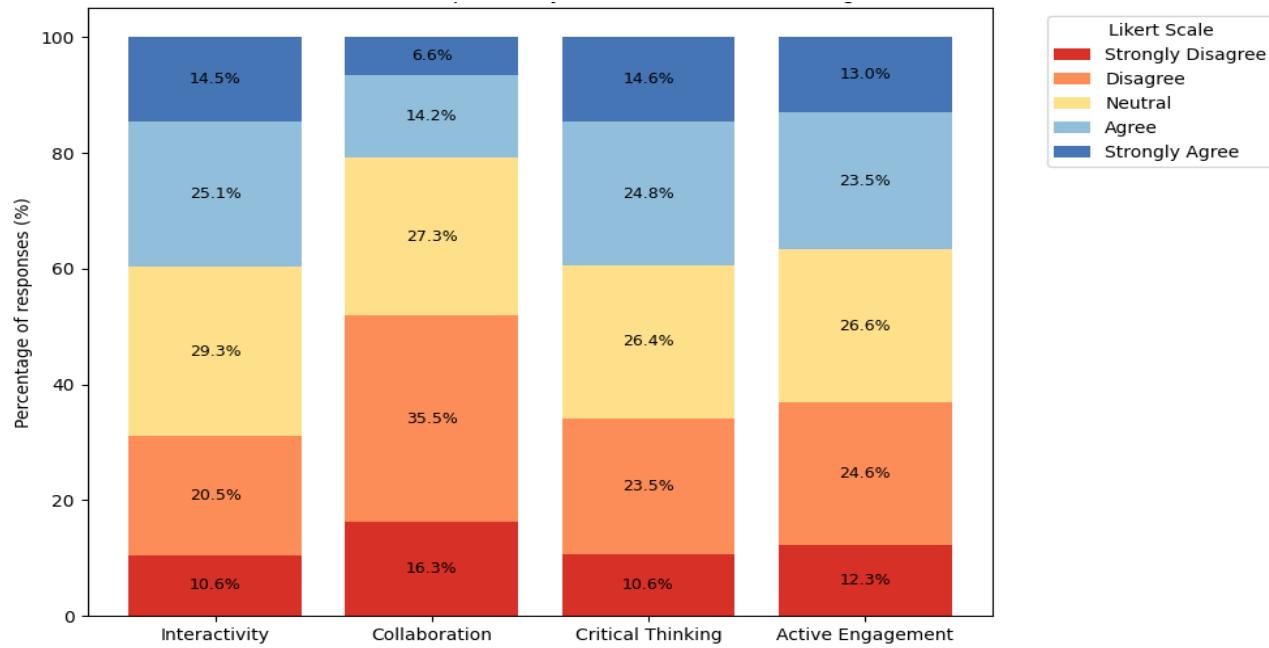
Source: Field data (2025).

4.5 Active Engagement in Smart Classroom Learning

Item level results on active engagement are shown in Table 4. As illustrated in Table 4, students reported higher agreement on items related to enjoyment, attention, and interest during smart classroom lessons. However, the lowest levels of agreement were observed for items assessing whether smart classroom use reduced absenteeism and boredom. This pattern suggests that while technology enhanced immediate classroom engagement, its influence on sustained motivation and attendance related outcomes was limited.

Table 4: Item-Level Student Ratings on Active Engagement (N = 175)

Statements	SD	D	N	A	SA	Total
I pay more attention during smart classroom lessons.	21 (12.0%)	42 (24.0%)	47 (26.9%)	41 (23.4%)	24 (13.7%)	175 (100%)
Learning with technology increases my concentration.	23 (13.1%)	44 (25.1%)	46 (26.3%)	39 (22.3%)	23 (13.1%)	175 (100%)
I am eager to use digital resources for my assignments.	19 (10.9%)	41 (23.4%)	48 (27.4%)	44 (25.1%)	23 (13.1%)	175 (100%)
The smart classroom makes learning more enjoyable.	18 (10.3%)	39 (22.3%)	45 (25.7%)	47 (26.9%)	26 (14.9%)	175 (100%)
I engage more with teachers when using digital tools.	20 (11.4%)	43 (24.6%)	47 (26.9%)	42 (24.0%)	23 (13.1%)	175 (100%)
Smart classrooms reduce absenteeism and boredom.	28 (16.0%)	49 (28.0%)	46 (26.3%)	34 (19.4%)	18 (10.3%)	175 (100%)


Note. SD = Strongly Disagree, D = Disagree, N = Neutral, A = Agree, SA = Strongly Agree. Percentages are based on N = 175.

Source: Field data (2025).

4.6 Summary of Learning Outcomes across Constructs

A synthesized overview of the four learning outcomes is presented in Figure 1, which displays aggregated mean percentage scores derived from item level responses. As shown in Figure 1, interactivity and critical thinking recorded the highest mean percentages, followed closely by active engagement, while collaboration recorded the lowest mean percentage. The figure highlights relative strengths and weaknesses across interactivity, collaboration, critical thinking, and active engagement.

Figure 1: Student Responses on Smart Classroom Learning Outcomes

Source: Field data (2025).

4.7 Relationships among Interactivity, Collaboration, Critical Thinking, and Active Engagement

The relationships among the four learning outcomes were examined using Pearson correlation analysis, with results presented in Table 5. As shown in Table 5, all four learning outcomes were positively and statistically significantly related. Active engagement demonstrated the strongest associations with collaboration and critical thinking, while its association with interactivity was moderate. These results indicate that student engagement in smart classroom learning was more strongly related to peer interaction and cognitively demanding activities than to interactive presentation alone.

Table 5: Pearson Correlations among Interactivity, Collaboration, Critical Thinking, and Active Engagement (N = 175)

Variable	Interactivity	Collaboration	Critical Thinking	Active Engagement
Interactivity	1.000	.647**	.536**	.558**
Collaboration	.647**	1.000	.593**	.655**
Critical Thinking	.536**	.593**	1.000	.611**
Active Engagement	.558**	.655**	.611**	1.000

Note. $p < .01$ (2-tailed).

Source: Field data (2025).

4.8 Qualitative Explanations of Quantitative Patterns

Qualitative findings provide explanatory insight into the quantitative results reported in Tables 1 through 5 and Figure 1. Students consistently described lessons in which teachers controlled digital devices while learners remained passive observers, limiting hands on participation and interactive questioning. Collaboration was constrained by limited access to functional devices, large class sizes, and classroom arrangements that were not conducive to group work. Critical thinking activities were more evident when teachers used demonstrations or simulations. However, many lessons relied primarily on slide projection and note copying, offering limited opportunities for inquiry based learning. Engagement increased when technology functioned effectively but declined when technical challenges occurred or when lessons reverted to traditional lecture based approaches.

4.9 Discussion of the Findings

The purpose of this study was to examine how smart classroom learning influences interactivity, collaboration, critical thinking, and active engagement in secondary education. The findings demonstrate that smart classroom use is associated with moderate interactivity and active engagement, while collaboration and critical thinking remain comparatively weak and unevenly developed. These results provide important insights into how digital learning environments are currently enacted in practice rather than how they are theoretically expected to function. The observed improvement in interactivity and engagement is consistent with previous studies that reported increased learner interest, attention, and participation following the integration of digital tools into classroom instruction. Research on technology enhanced learning environments has consistently shown that visual resources, multimedia content, and interactive presentations can enhance learner motivation and situational engagement (UNESCO, 2022; Del Hierro, 2023). The present findings align with this evidence, suggesting that smart classroom technologies are effective in capturing learners' attention and improving immediate classroom involvement.

However, the relatively weak collaboration outcomes contrast with earlier studies that emphasized the collaborative potential of technology supported learning environments. Prior research grounded in social constructivist and community of inquiry perspectives suggests that digital technologies can promote peer interaction, shared problem solving, and knowledge co construction when deliberately integrated into instructional design (Garrison et al., 2000; Kozma, 2003). The divergence observed in this study indicates that the presence of smart classroom infrastructure alone is insufficient to foster collaboration. One plausible explanation is that classroom practices remain largely teacher centered, with technology primarily used for presentation rather than for structured group activities or peer mediated learning.

Similarly, the mixed results related to critical thinking suggest that higher order cognitive outcomes were dependent on pedagogical use rather than technological availability. While some students reported improved application of learning and independent thinking, lower ratings for analytical problem solving and inquiry based tasks indicate that smart classroom lessons did not consistently engage learners in deeper cognitive processes. This finding is consistent with studies that argue that technology does not automatically enhance critical thinking unless it is embedded within inquiry oriented and problem based instructional strategies (Kinshuk et al., 2016;

Ngendahayo et al., 2024). In contexts where lessons emphasize content delivery and note copying, opportunities for analysis, evaluation, and synthesis remain limited.

The strong associations observed between active engagement, collaboration, and critical thinking further reinforce the importance of pedagogical integration. The results suggest that engagement increases when learners are involved in cognitively demanding tasks and peer interaction, rather than when technology is used solely for interactive presentation. This supports existing evidence that meaningful engagement in digital learning environments is closely linked to social interaction and higher order learning activities (Garrison et al., 2000; UNESCO, 2022). This study contributes to the literature by providing item level and mixed methods evidence from a secondary education context where smart classroom initiatives are still evolving. Unlike studies that focus primarily on infrastructure availability or teacher readiness, this research demonstrates that different learning outcomes respond differently to smart classroom use. The findings highlight an important imbalance, where engagement and interest improve more readily than collaboration and critical thinking. This nuanced understanding adds empirical depth to current debates on technology integration in education, particularly in emerging and resource constrained contexts.

The implications of these findings are significant for policy, practice, and professional development. First, smart classroom investments should be accompanied by pedagogical support frameworks that emphasize collaborative learning, inquiry based instruction, and problem solving. Second, teacher professional development should extend beyond technical skills to include instructional design strategies that leverage technology for higher order learning. Third, school leaders and policymakers should address structural constraints such as class size, access to devices, and classroom organization to enable meaningful student participation. Finally, the findings suggest several directions for future research. Longitudinal studies could examine whether sustained exposure to learner centered smart classroom pedagogy leads to stronger development of collaboration and critical thinking over time. Future research could also explore subject specific instructional strategies and teacher practices that successfully translate smart classroom use into deeper cognitive and social learning outcomes.

5.0 Conclusion

This study examined the relationship between smart classroom learning and four core learning outcomes interactivity, collaboration, critical thinking, and active engagement in secondary education. It focused on item level student responses complemented by qualitative explanations to capture not only the presence of smart classroom practices but also their pedagogical depth and effectiveness. The results support the conclusion that smart classroom learning contributes meaningfully to interactivity and active engagement, while its potential to foster collaboration and critical thinking remains underutilized. The findings demonstrate that smart classroom technologies tend to enhance student interest, enjoyment, and attention, particularly when lessons incorporate visual and interactive elements. However, the weaker outcomes observed for collaboration and critical thinking indicate that technology alone does not automatically transform learning. These outcomes depend strongly on how lessons are structured, how actively students are involved, and whether instructional practices move beyond teacher directed presentation toward student centered and inquiry based approaches.

This study makes a clear contribution to the literature by providing empirical evidence that differentiates between surface level engagement and deeper learning outcomes within smart classroom environments. By presenting item level patterns alongside qualitative explanations, the study advances understanding of why certain outcomes improve while others stagnate, particularly in contexts where access to digital infrastructure outpaces pedagogical change. This contributes new insight into the ongoing debate on the educational value of smart classrooms beyond infrastructure provision. Several limitations should be acknowledged. The study relied on self-reported student data, which may be subject to perception bias. In addition, the cross sectional design does not allow for causal inference or assessment of long term learning effects.

The findings are also context specific and should be generalized cautiously. These limitations notwithstanding, the consistency between quantitative patterns and qualitative accounts strengthens the credibility of the conclusions. Overall, the study underscores that the effectiveness of smart classrooms depends less on the presence of technology and more on how it is pedagogically integrated. The findings suggest that future efforts should prioritize instructional design, collaborative learning structures, and inquiry oriented activities to fully realize the transformative potential of smart classrooms. Future research should adopt longitudinal and experimental approaches to examine how sustained pedagogical innovation can convert technological investment into durable gains in higher order learning outcomes.

REFERENCES

Barasa, P. L. (2021). Digitalization in teaching and education in Ethiopia, Kenya, Malawi, Rwanda and the United Republic of Tanzania: Digitalization, the future of work and the teaching profession project. International Labour Organization.

Bergmann, J., & Sams, A. (2012). *Flip your classroom: Reach every student in every class every day*. International Society for Technology in Education.

Creswell, J. W., & Creswell, J. D. (2018). *Research design: Qualitative, quantitative, and mixed methods approaches* (5th ed.). SAGE Publications.

Del Hierro, E. (2023). Technology-enhanced learning and student engagement in secondary education. *International Journal of Educational Technology in Higher Education*, 20(1), 1–15. <https://doi.org/10.1186/s41239-023-00385-7>

Garrison, D. R., Anderson, T., & Archer, W. (2000). Critical inquiry in a text-based environment: Computer conferencing in higher education. *The Internet and Higher Education*, 2(2–3), 87–105. [https://doi.org/10.1016/S1096-7516\(00\)00016-6](https://doi.org/10.1016/S1096-7516(00)00016-6)

Kinshuk, D., Chen, N. S., Cheng, I. L., & Chew, S. W. (2016). Evolution is not enough: Revolutionizing current learning environments to smart learning environments. *International Journal of Artificial Intelligence in Education*, 26(2), 561–581. <https://doi.org/10.1007/s40593-016-0108-x>

Kozma, R. B. (2003). Technology, innovation, and educational change: A global perspective. International Society for Technology in Education.

Mushimiyimana, J. B. (2021). ICT integration in Rwandan secondary schools: Challenges and opportunities for teaching and learning. *Rwandan Journal of Education*, 5(2), 45–60.

Ngendahayo, E., Habarurema, E., Limone, P., & Zhang, M. (2024). Technology-supported collaborative learning and critical thinking development in secondary education. *Education and Information Technologies*, 29(3), 3121–3142. <https://doi.org/10.1007/s10639-023-12089-4>

Tondeur, J., van Braak, J., Ertmer, P. A., & Ottenbreit-Leftwich, A. (2017). Understanding the relationship between teachers' pedagogical beliefs and technology use in education: A systematic review. *Educational Technology Research and Development*, 65(3), 555–575. <https://doi.org/10.1007/s11423-016-9481-2>

UNESCO. (2019). ICT in education: A critical literature review and its implications. United Nations Educational, Scientific and Cultural Organization.

UNESCO. (2022). Technology in education: A tool on whose terms? Global education monitoring report. UNESCO Publishing.

Vygotsky, L. S. (1978). *Mind in society: The development of higher psychological processes*. Harvard University Press.

World Bank. (2023). Transforming education with digital technologies: Global education evidence. World Bank Publications.