

ISSN Online 2617-3573

Stratford
Peer Reviewed Journals & books

Selected Factors and Adoption of Electronic Performance in Public Secondary School Teachers in Bomet Central Sub-County

Rutto Kipkorir Leonard, Dr. Doreen Njeje & Mr. Ruto Yano

ISSN: 2617-3573

Selected Factors and Adoption of Electronic Performance in Public Secondary School Teachers in Bomet Central Sub-County

^{*1}Rutto Kipkorir Leonard, ²Dr. Doreen Njeje & ³Mr. Ruto Yano

¹Master's Student, The Catholic University of Eastern Africa

²Senior lecturer, School of Business-The Catholic University of Eastern Africa

³Lecturer, School of Business-The Catholic University of Eastern Africa

*E-mail of corresponding author: Leonardrutto@gmail.com

How to cite this article: Rutto, L. K., Njeje, D. & Yano, R. (2022). Selected Factors and Adoption of Electronic Performance in Public Secondary School Teachers in Bomet Central Sub-County. *Journal of Information and Technology*, 6(1), 62-85. <https://doi.org/10.53819/81018102t4074>

Abstract

The purpose of this study was to establish factors hindering teachers' acceptance of electronic performance system used as an appraisal tool. The study was guided by the following specific research objectives: To establish effects of performance expectancy, effort expectancy, social influence and facilitating condition on teachers' acceptance of electronic performance system. The study adopted a survey research design subjecting public secondary school teachers in Bomet Central sub-county. Krejcie and Morgan's table and a formula of sample size determination was used to select 196 respondents for the study. Purposive sampling technique was used to target principal, stratified sampling technique with be used to sample from each strata; Languages, Sciences, Humanities, and Creative Arts. Simple random sampling technique was used to sample respondents from each strata. The quantitative data collected was coded and analyzed using the Pearson's (r) Correlation, regression analysis (R) and ANOVA, SPSS, tables and graphs. Regressing analysis revealed R squared of 0.702, implying that the variables used in this study; resource-based conditions, performance expectancy, effort expectancy and social influence jointly explained 70.2 percent of the variation in the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-County. The study concludes that the selected factors adopted by this study which included resource-based conditions, performance expectancy, effort expectancy and social influence have positive and significant effect on the adoption and implementation of electronic performance by public secondary school teachers in Bomet Central Sub-county. The study thus recommends that the managements of public secondary schools in Bomet central sub county and the country at large should strive to embrace resource-based conditions, performance expectancy, effort expectancy and social influence, since they have been

<https://doi.org/10.53819/81018102t4074>

found to have positive effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county.

Keywords: *Selected Factors, Performance expectancy, Effort expectancy, Social influence, Resource-based conditions, Adoption of Electronic performance system.*

1.0 Background of the study

Recent years have seen an accelerating interest in performance support as an alternative to traditional training in technical environments (Mensah, Zeng, Luo, Zhi-wu & Lu, 2021). Not surprisingly, the range of electronic performance technologies is broadening in line with the increasing use of computers at home and work. Electronic Performance Systems are making inroads into office and manufacturing environments - hot on the heels of the computer revolution. The performance system approach is rapidly spreading throughout the professional training community as an alternative approach to training, and is offering a new set of interface design principles for professionals in the human computer interface design community (Chauhan, Yadav, & Choudhary, 2022). Electronic Performance Systems are systems that provide an organization with the information, advice and learning experiences they need to get up to speed as quickly as possible and with the minimum of support from other people. Electronic Performance Systems also provides the electronic infrastructure that captures, stores and distributes knowledge throughout an organization to enable it to learn faster than its competitors (Chauhan *et al.*, 2022).

Performance management is one of the most importance human resources management practices that yields critical decisions integral to various human resources actions and outcomes. Recent years have seen an acceleration of interest in performance support as an alternative to traditional evaluation mechanisms in technical environments. The range of electronic performance technologies is broadening in line with the increase use of computers at home and work. Electronic performance systems are making inroads into office and manufacturing environments – hot on the heels of the computer revolution. (Prasanna *et al.*, 2002). Technology adoption is usually modeled a process with dynamic transitions between costs and benefits. Nevertheless, school teachers do not generally make effective use of technology in their teaching.

According to Fedorko, Bačík and Gavurova (2021), the Behavioural intention to use technology is said to be influenced by performance expectancy because it provides benefits to consumers in performing certain activities. Performance expectancy as a degree to which using technology will provide direct and indirect benefits to consumers in performing certain activities, and is theorized to influence behavioural intention to use technology (Hutabarat *et al.*, 2021). Effort expectancy is the degree of ease associated with the use of the system (Ghalandari, 2012). Many researchers found that effort expectancy has a significant influence on intention to adopt new technology (Alraja, 2015; Sung *et al.*, 2015; Rahi *et al.*, 2019). Kipsoi *et al.*, (2012) examines challenges facing adoption of Information Technology (ICT) in educational management in schools in Kenya. Findings of this study shows that Kenyan schools hardly use ICTs to manage quality output or to raise teacher productivity, or to reduce the cost through analyzing spending. This is attributed to myriad of challenges facing most schools in Kenya with regards to adoption of ICT in educational management. This has resulted to slow rate of adoption despite its promise and potential for use in educational management in schools.

1.1 Statement of the problem

Kenya National Union of Teachers (KNUT) protested adoption of Electronic performance system and express concerns over a teaching delivery monitoring tool being implemented by the Teachers Service Commission (TSC) to track the conduct of teaching programmes in schools. KNUT is opposed to the performance appraisal saying it may be used to victimize teachers when seeking promotion and unfairly blame them for poor performance. According to the Chepkoilel branch, KNUT Secretary General Sammy Bor, performance appraisal instrument could be used by TSC to frustrate teachers in issues they have no direct influence on teachers' productivity and dwindling performance of candidates at national examinations. "The instrument is taking too much time from the teachers filling the detailed document instead of teaching," said Bor in Eldoret town, Monday. (Ronoh, 2018).

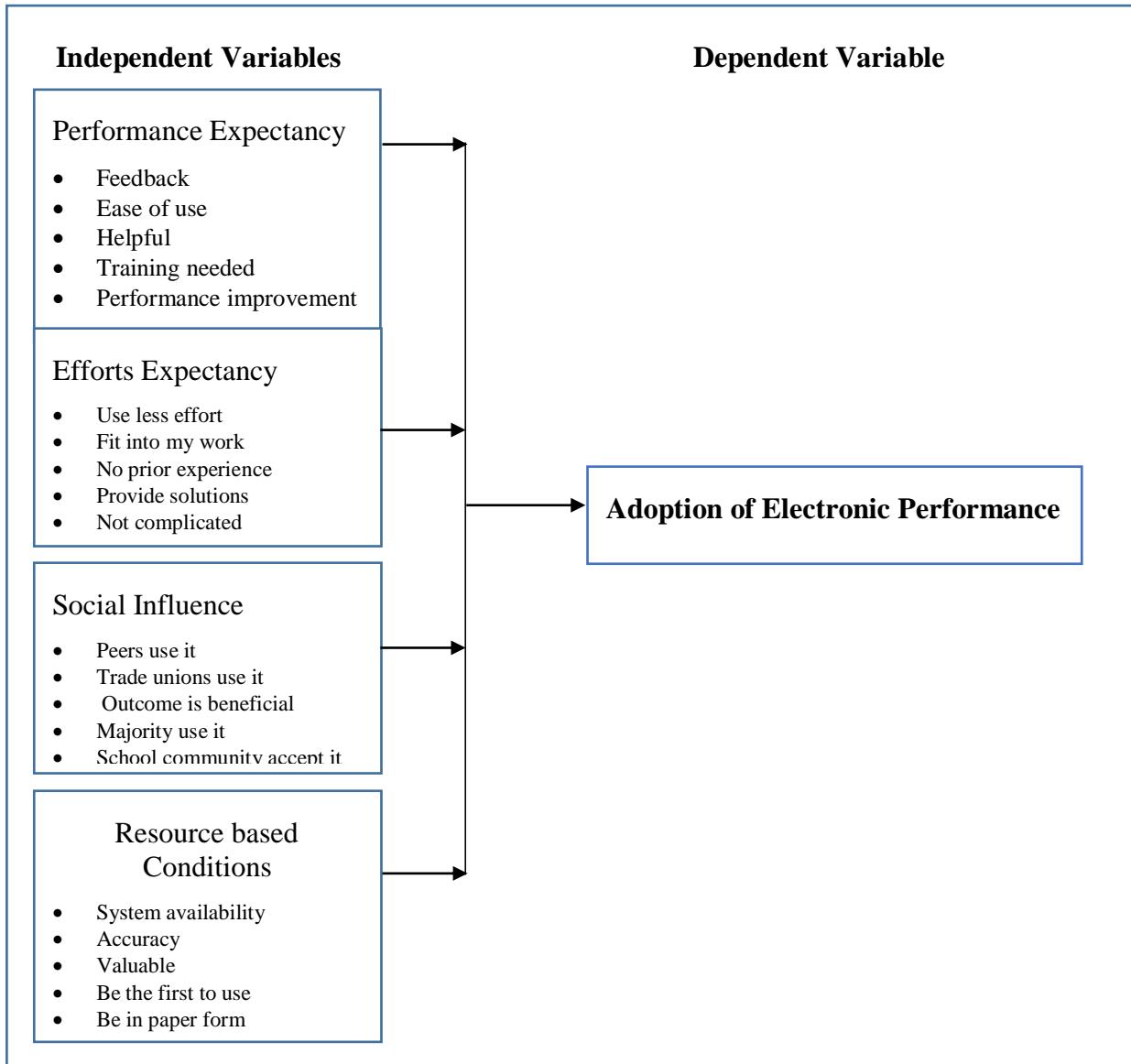
Owuonda *et al.* (2020), studies on teachers attitudes towards Teacher Performance Appraisal system policy to public secondary school academic achievement in home bay county Kenya. The study reveals that teachers in public secondary school in Homa Bay County had negative attitude towards teacher's performance appraisal. The study recommends teachers to be trained in order to understand the tool. Further, teachers should be involved in the design of teacher performance appraisal tool. The study recommends further studies in the region on attitude of secondary school teachers on teachers' performance appraisal tool. Bomet Central Sub County where this study contacted is in the same region with Homa Bay County.

Owuonda *et al.* (2020) concluded that teachers in public secondary schools in Homa Bay County had negative attitudes towards acceptance of teachers' performance appraisals. Since the study was conducted in Homa Bay County and focused mainly on teachers' performance appraisals as the main study variable, both contextual and conceptual gaps are evident. This study sought to bridge the existing gaps by examining specific effects of performance expectancy, effort expectancy, social influence and resource-based conditions on acceptance of electronic performance system by secondary school teachers in Bomet central sub-county. The researcher recommends further studies to be conducted in other counties to collaborate the findings of this study.

1.2 Research Objectives

- i. To determine effect of performance expectancy on adoption of Electronic Performance system,
- ii. To assess effect of effort expectancy on adoption of Electronic Performance system,
- iii. To evaluate effect of social influence on adoption of Electronic Performance system,
- iv. To establish effect of resource-based conditions on adoption of Electronic performance system.

1.3 Hypotheses


H₀₁: Performance expectancy has no significant effect on adoption of Electronic Performance system.

H₀₂: Effort expectancy has no significant effect on adoption of Electronic Performance system,

H₀₃: Social influence has no significant effect on adoption of Electronic Performance system,

H04: Resource-based conditions have no significant effect on adoption of Electronic performance system.

1.4 Conceptual framework

Figure 1: Conceptual Framework

Sources: Researchers (2022).

2.1 Theoretical Review

2.1.1 Technology Acceptance Model (TAM)

This study was anchored on Technology acceptance model by Davis (1989). Technology Acceptance Model is widely used to explain an individual acceptance of information system. According to Boots *et al.*, (2016), Technology Acceptance Model (TAM) developed by Davis (1989) is one of the most popular research models to predict use and acceptance of information systems and technology by individual users. TAM has been widely studied and verified by different studies that examine individual technology acceptance behavior in different information systems constructs. In TAM model, there are two factors, perceive usefulness and perceive ease of use is relevant in computer use behaviors.

Davis (1989) defines perceived usefulness as prospective user's subjective probability that using a specific application system enhances his or her job in life performance. Perceive ease of use (PEU) can be define as the degree to which prospective users expect the target system to be free of effort. The attitude to use is concerned with the user's evaluation of desirability of employing a particular system application. Behavioral intention is the measure of the likelihood of a person employing the application. (Surendran, 2012). Teachers perform their duties with expectations of a reward and not for pleasure or as proposed by Csikzentmihalyi, (1970) As applied to this study, TAM theory holds that; performance expectancy, effort expectancy, social influence and Resource-based Conditions would influence teachers' acceptance of electronic performance system.

2.1.2 Theory of Reasoned Action (TRA)

The Theory of Reasoned Action (TRA) was first proposed by Fishbein and Ajzen (1975). Theory of Reasoned Action states that beliefs, attitudes, intentions and behavior forms a causal chain, so that belief leads to attitude and attitude in turn leads to intention and so behavior. Surendran, (2012) adds that in the theory of reason action the individual behavior is motivated by behavioral objectives and these are the functions of individuals' attitudes towards the behavior and subjective norms surrounding the performance of behavior. The only meaningful way to address acceptance of a system is to address the ease of use and perceive usefulness as envisage by effort expectancy.

Theory of Reason action (TRA), Fishbein, (1980) developed out of social-psychological research on attitude and attitude -behaviour relationship. The model assumes that most behaviours of social relevance (including health behaviours) are under volitional control and that a persons' intention to perform a behaviour is both the immediate determinant and the single best predictor of that behaviour. Intension in turn is held to be a function of basic determinants; attitude towards the behaviour (the persons' overall evaluation of performing the behaviour) and subjective norms (the perceive expectations of importance others with regard to the individual performing the behaviour in question). Sutton, S. (2001). As adapted in this study Theory of Reasoned Action (TRA) holds that effort expectancy influences teachers' acceptance of electronic performance system.

2.1.3 Unified Theory of Acceptance and Use of Technology (UTAUT)

Unified Theory of Acceptance and Use of Technology (UTAUT) was formulated by Venkatesh et al. (2003). Venkatesh et al. (2003) advanced the theory of united theory of Acceptance and use of Technology (UTAUT) that examines the acceptance of technology, determined by the effects of performance expectancy, effort expectancy, social influence and Resource-based Conditions. Theoretical model UTAUT suggest that the actual use of technology is determined by behavioral

<https://doi.org/10.53819/81018102t4074>

intention. The perceived likelihood of adopting technology is dependent on direct effects of four key constructs, namely performance expectancy, effort expectancy social influence and Resource-based Conditions. The effects of predictors are moderated by age, gender, experience and voluntariness of use. (Venkatesh *et al.*, 2003).

Unified Theory of Acceptance and Use of Technology (UTAUT) was introduced by accumulation of various research efforts represented in different model and theories of technology acceptance. The UTAUT is considered a trial to unify terminology of various variables of different models and theories of Technology Acceptance (Ahmad, 2015). Alaa (2020) argues that the actual use of any information system implicitly relies on existence of intention towards using it. But the continuation of using information system depends on two beliefs; in the first stage information system has to be accepted by users. Then the continuing usage which comes after acceptance depends on users' satisfaction after acceptance. In the organizational environment, it means continuing in increasing investment in technology.

2.2 Empirical review

2.2.1 Performance Expectancy and Adoption of Electronic Performance

According to Olsen (2008), performance expectancy is defined as the degree to which an individual believes that using the system will help one to attained gains in job performance. Alraja *et al.*, (2016) studies influence of Effort and Performance Expectancy of Employees to Adopt E-government in Oman. Alraja describes performance expectancy to refer to as individual believe to what extend their performance will improve if they use the system. According to Venkatesh *et al.* (2003), performance expectancy contains five constructs; perceived usefulness, outcome expectations, job fit, relative advantage and intrinsic motivation.

Alraja *et al.*, (2016) investigates the Influence of effort and performance of employees to adoption of E-governance, from Oman. Using UTAUT theory, the researcher model two constructs of; performance and effort expectancy, to examine the effects on the intension to adopt electronic government in Sultanate of Oman from an employees' perspective. A manual survey was conducted the requested data. The total number of valid questionnaires for analysis are 204 which forms 83.3% of the study sample. The study model explained 50.5% of the whole deviation in employee intension to adopt e-government. Moreover, both constructs performance expectancy and effort expectancy have a significant influence on employee intension to adopt electronic government.

Papagiannidis (2021) examined Unified Theory of Acceptance and Use of Technology. The researcher's findings suggest that the actual use of a technology is determined by behavioral intension. The perceived likelihood of adopting the technology is dependent on the direct effects of four key constructs, namely; performance expectancy, effort expectancy, social influence and facilitating conditions. The effects of predictors are moderated by age, gender, experience and voluntariness of use (Venkatesh *et al.*, 2003).

2.2.2 Efforts Expectancy and Adoption of Electronic Performance.

Papagiannidis (2022), the Task Technology Fit (TTF) Model developed by (Goodhue & Thamson,1995) to explain utilization of technology by examining the fit of technology to users' tasks/ requirements. The purpose of TTF theory was to add to the body of knowledge on technology utilization in the private and public context which had limited explanation as to how the acceptance of technology contributes to individual's performance. TTF was the first theory

<https://doi.org/10.53819/81018102t4074>

that aimed to explore the post adoption aspect of technology utilization unlike other prior research which had mainly focused on the antecedents of use and intension.

Gavurova *et al.*, (2021) investigated effort expectancy and social influence Factors as main determinants of performance expectancy using electronic banking. The study adapts constructs and definitions from UTAUT model in the context of adaptation of online banking technology. With regard to the nature of the variables analyzed, the following statistical test and methods were used. Calculations of average values using descriptive statistics, multilayer regression analysis – to interpret associations between quantitative variables. The survey sample consists of 454 men and women and reflects the profile of online consumers across different countries of European Union. The results of this study show the impact of the social influence constructs on the respondents' behavior when using electronic banking. The expected effort factor in the study significantly affects the expected performance factor, which can be characterized by original research, which shows that the effect of perceive ease of use on behavioral intent and use is incompatible with the degree of system complexity.

2.2.3 Social Influence and Adoption of Electronic Performance

According to Wayne (2019) TPB has six constructs that collectively represent a person control over the behavior. Attitudes refers to the degree to which, a person has favorable or unfavorable evaluation of behavior of interest. It entails consideration of an outcome of performing behaviors. Behavioral intension on the other hand refers to the motivational factors that influence where the stronger the intension to perform behavior, the more likely the behavior will be performed.

According to Schmidt *et al.*, (2020), TPB, human behavior is guided by three kinds of considerations. Beliefs about the likely consequence of behavior, (Behavioral belief), belief about normative expectations of others, (normative belief). Belief about the presence of factors that may facilitate or impede the performance of behavior, (control belief). In their respective aggregates, behavioral belief produces a favorable or unfavorable attitude towards a behavior, normative belief results in perceived social pressure or subjective norm; and control belief give rise to perceived behavioral control or self-efficacy. The effect of attitudes towards behavior and subjective norm or intention are moderated by perception of behavioral control.

Edda (2020) conducted study to investigate adoption and Impacts on electronic management systems (ERMS) in Tanzania, with specific focus in Tanzania Public Service College. (TPSC). Specifically, the study assesses factors affecting the adoption of ERMS in TPSC. The study used a case study research design. Data were collected through a population of 205 with a sample size of 173. The findings recommend that the government of Tanzania should continue building capacity at least twice per year on Information systems usage. Furthermore, the government should develop appropriate policies and strategies to ensure confidentiality, integrity and availability of public information. Wayne (2019), Yany (2009) and Edda (2020) studies support the theory Planned Behavior's constructs of attitudes, behaviors and subjective norms and image. However, these studies left out aspects of environmental and economic factors and behavioral intention and motivation such as fear, social media and dynamism of time.

2.2.4 Resource-based Conditions and Adoption of Electronic Performance

Alamanos *et al.* (2022) refers to Resource-Based Theory by Barney (1991) provides a framework to highlight and predict the fundamentals of organization performance and competitive advantage. Barney emphasis on focusing on internal organizational resources as oppose to externally driven

approaches to understand the accomplishment or failures of leveraging organizational activities. Barney's RBT grouped company resources into three categories, namely physical capital resources, human capital resources and organizational capital resource all these align for organizational competitive advantage. In development of RBT framework presented in VRIS Model (Valuable, Rareness, Inimitable, and Substitutability), was later replaced by VRIO Model (Valuable, Rareness, inimitability, Organization) (Barney, 1991; Barney 2007). The VRIO model proposes the new criteria of the organizational embeddedness of a resource. This criterion proposes the importance of organization is organized in such a way to exploit internal resources.

According to Pinincu (2020), Resource-based View (RBV), Definition, Advantages and disadvantages, small business can leverage their internal resources to gain competitive advantage. In RBV, this approach is based on idea that companies' assets, organizational process, expertise and capabilities can strengthen its position in the market. This theory (RBV) highlights the need for a fit between a company's strategic resources and the external markets rather than focusing solely on its external competitive environment. According to Barney (1991), RBV is based on the idea that a company's resources determined its success and it states that firms' resources and sustained competitive advantage. Its proponent states that sustainable competitive advantage and business performance is derived from developing strategic resources.

Mang'ana (2022) sought to establish the relationship between adoption strategic adoption of technological innovation and competitive advantage of commercial Banks in Kenya. Specific objectives were to establish the influence of E-money transfer technologies, telephone banking technologies, internet banking technologies and internal controls on competitive advantage of Commercial Banks in Kenya. The study adopts Resource Based View theory, Innovation Diffusion Theory, Competitive Advantage Theory and Disruptive Innovation Theory. The target population comprises of 43 commercial Banks operating in Kenya comprising of 215 respondents. The findings of the study adoption of innovative technologies (E-money transfer, telephone banking, internet banking and internal controls) had a positive and significant influence on competitive advantage on Commercial banks in Kenya.

3.0 Research Methodology

This study was conducted through survey research design. It was used to provide numeric descriptions of some parts of the population. It describes and explain events as they are, as they were. Survey design is selected for this study because it considers issues such as economy of the design, rapid data collection and ability to understand from a part of it. It is also suitable for extensive research. The target population of this study comprised 391 teachers comprising of 50 principals and 341 teachers teaching in sciences, humanities, languages, and creative arts departments (TSC, 2019). Secondary schools teachers in Bomet Central sub-county were homogenous and teach in departmental strata such as; languages, sciences, humanities and creative arts. This is representations of distributions and structuring of all secondary school teachers in the republic of Kenya. Only 341 teachers from Sciences, Humanities, Languages, Creative Arts and 50 Principals were involved in this study. Using the Krejcie and Morgan (1970) table of sample size determination 196 teachers were respondents in this study. This study excluded non-teaching staff. The sample size of this study was obtained using the Krejcie and Morgan (1970) table of sample size determination. Since the population size was 391, the sample size was 196 teachers teaching in Bomet Central Sub-County. This is shown in the workings in Krejcie and Morgan Formula (1970).

$$n = X^2 NP (1 - P) \div e^2 (N - 1) + X^2 P (1 - P).$$

n = required sample size.

X^2 = the table value of chi-square for 1 degree of freedom at the desired confidence level,
 $1.96 \times 1.96 = 3.8416 = (3.841)$.

N = the population size.

e^2 = margin of error

P = the population proportion (assumed to be .50 since this would provide the maximum sample size).

To calculate sample size from a population of 391,

$$\text{Therefore: } n = X^2 NP (1 - P) \div e^2 (N - 1) + X^2 P (1 - P).$$

At 95% confidence level with a degree of freedom of 1, the chi-square value is $X^2 = 1.96^2 = 3.841$.

At 95% confidence level the margin of error (e) is 0.05.

Population proportion P is 50% = 0.50.

Population N = 391.

$$e = .05^2 = 0.0025$$

$$n = 3.8416 * 391 * 0.5 * 0.5 / 0.0025 * 390 + (3.8416 * 0.5 * 0.5)$$

$$n = 375.5164 / 1.9257$$

$$n = 195.01$$

$$n = 196$$

Therefore, from Krejcie and Morgan (1970), 391, $n = 196$.

Each stratum contains homogeneous samples in every department. The sample size per stratum is determined by using stratified sampling formula:

Population per stratum = total population/number of strata

$$\text{Population per stratum} = 391 / 5 = 78$$

Stratified random sampling = Total sample size (n)/ population (N) * population per stratum

$$\text{Stratified random sampling} = 196 / 391 * 78 = 39$$

The probability of selecting a sample within a stratum was determined using simple random formula, probability (P) total population (N) / sample population (n)

$$P = 391 / 196 = 1.8 \approx 1 \text{ sample per stratum}$$

Questionnaire was the key data collection instrument in this study. Multiple linear regression formula was expressed using the following equation:

$$Y = a + bPE_1 + cEE_2 + dSI_3 + eRBC_4 + e$$

Where:

Y = dependent variable, Adoption of electronic performance.

PE₁, EE₂, SI₃, P₄, PLC₅ = independent variables representing, performance expectancy (PE₁), Effort Expectancy (EE₂), Social Influence (SI₃) and Resource-Based Conditions, (RBC₄) respectively. a= intercept,

b, c, d, e, = slope

e= residual (error)

This research adopted multiple linear regression analysis because of multiple independent variables used in this study. Since there were several independent variables in multiple linear analysis, non-collinearity is a mandatory condition for this study, where independent variables show a minimum correlation with each other. This study also adopted correlation matrix in its data analysis as well.

4.0 Findings and Discussion

The study targeted 391 teachers comprising of 50 principals and 341 teachers teaching in sciences, humanities, languages, and creative arts departments. The study sample size was 196 made up of 48 principals and 148 teachers. A total of one hundred and ninety-six (196) questionnaires were distributed to the sampled 196 respondents and 163 questionnaires were dully filled and returned. This translated to a response rate of 83.16 percent.

4.1 Descriptive Statistics Analysis

Table 1: Descriptive Analysis on Performance Expectancy

Statements	SD	D	NC	A	SA	Mean	SD
I will use electronic performance if I receive appraisal feedback	0.00%	0.00%	1.00%	13.00%	86.00%	4.850	0.386
I will use electronic performance if it replaces my manual work	2.00%	5.00%	5.00%	22.00%	66.00%	4.450	0.947
I will use electronic performance if it is interesting to work with	2.00%	5.00%	3.00%	17.00%	73.00%	4.540	0.926
I will use electronic performance if it is easy to use	3.00%	3.00%	9.00%	18.00%	67.00%	4.430	0.987
I will use electronic performance if it makes me a better teacher	1.00%	5.00%	9.00%	22.00%	63.00%	4.410	0.922
I will use electronic performance if will improve my work	1.00%	8.00%	9.00%	12.00%	70.00%	4.420	1.017
I will use electronic performance if I am trained	0.00%	1.00%	5.00%	30.00%	64.00%	4.570	0.640
I will use electronic performance if it is helpful in my work	3.00%	6.00%	9.00%	19.00%	63.00%	4.330	1.064
Average						4.500	0.861

SD=Strongly disagree, D=Disagree, NC=No comment, A=Agree, SA=Strongly agree, SD=Standard deviation

Based on the descriptive statistics results in the table, majority (99%) of the teachers agreed that they would use electronic performance if they received appraisal feedback. This implies that appraisal feedback determines the usage of electronic performance among teachers. The results had mean and standard deviation of 4.850 and respectively 0.386. The results also show that majority of the teachers (88%) would use electronic performance if it replaces their manual work. This was affirmed by majority of the teachers (Mean=4.450, SD=0.947). Furthermore, majority of the teachers (90%) of the teachers were in agreement that they would use electronic performance if it is interesting to work with (Mean=4.540, SD=0.926).

Moreover, majority of the teachers (85%) would use electronic performance if it was easy to use as was also confirmed by (Mean=4.430, SD=0.987). The study results further show that majority

<https://doi.org/10.53819/81018102t4074>

of the teachers (85%) were in agreement with the statement that they would use electronic performance if it makes them better teachers. Most of the teachers (82%) indicated that they would use electronic performance if it is able to improve their work. The responses had a mean and standard deviation of 4.420 and 1.017 respectively.

Similarly, the results show that majority of the teachers (Mean=4.570, SD=0.640) would use electronic performance if they were trained. Finally, the results show that majority of the teachers (82%) agreed they would use electronic performance if it is helpful their work. The same was affirmed by a mean and standard deviation of 4.330 and 1.064 respectively. The overall average mean and standard deviation are 4.500 and 0.861 respectively. This implies that most of the respondents were agreeing with the statements on performance expectancy and their responses were uniformly distributed about the mean response.

Table 2: Descriptive Analysis on Effort Expectancy

Statements	SD	D	NC	A	SA	Mean	SD
I will use electronic performance if I can use less effort to interact with the system.	5.00%	2.00%	6.00%	32.00%	55.00%	4.300	1.030
I will use electronic performance if I don't necessarily need to have prior experience	1.00%	2.00%	8.00%	33.00%	56.00%	4.410	0.805
I will use electronic performance system if it is not complicated	1.00%	17.00%	8.00%	30.00%	44.00%	3.990	1.141
I will use electronic performance system if it fit into current evaluation	3.00%	6.00%	7.00%	23.00%	61.00%	4.330	1.045
I will use electronic performance if it provides solution	1.00%	4.00%	5.00%	30.00%	60.00%	4.440	0.845
I will use electronic performance without training	1.00%	4.00%	5.00%	27.00%	63.00%	4.470	0.846
I will use electronic performance if I had prior experienced	1.00%	12.00%	5.00%	25.00%	57.00%	4.250	1.067
I will use electronic performance if it is easier to interact with	2.00%	2.00%	8.00%	22.00%	66.00%	4.480	0.882
I will use electronic performance if it makes me a better teacher	0.00%	1.00%	5.00%	33.00%	61.00%	4.540	0.642
Average						4.357	0.923

SD=Strongly disagree, D=Disagree, NC=No comment, A=Agree, SA=Strongly agree, SD=Standard deviation

The results show that majority (87%) of the teachers would use electronic performance if they were able to use less effort to interact with the system. This was affirmed by (Mean=4.300, SD=1.030). The responses also show that majority of the teachers (89%) agreed they would use electronic performance if they don't necessarily need to have prior experience. Furthermore, most of the teachers (74%) would use electronic performance system if it is not complicated (Mean=3.990, SD=1.141). The study results further show that majority of the teachers in Bomet County (84%) were in agreement that they would use electronic performance system if it fit into current evaluation which was also supported by (Mean=4.330, SD=1.045).

Moreover, it is evident from the results that most of the study participants (90%) were in agreement with the statement that they would use electronic performance if it provides solution to their problems, 90% of the teachers agreed that they would use electronic performance without training, 82% agreed that they would use electronic performance if they had prior experienced as was also confirmed by a mean and standard deviation of 4.250 and 1.067 respectively. Similarly, the results show that majority of the teachers (88%) agreed that they would use electronic performance if it is easier to interact with. Finally, the study established that majority (94%) of the teachers would be very much willing to use electronic performance if it makes them better teachers (Mean=4.540, SD=0.642). Then results recorded an average mean response and standard deviation of 4.357 and 0.923, which is attestation that majority of the teachers were agreeing with the statements on effort expectancy.

Table 3: Descriptive Analysis on Social Influence

Statements	SD	D	NC	A	SA	Mean	SD
I will use electronic performance if my peers use it	1.00%	1.00%	10.00%	39.00%	49.00%	4.340	0.781
I will use electronic performance if union leadership use it	1.00%	1.00%	5.00%	26.00%	67.00%	4.570	0.728
I will use electronic performance if I find it enjoyable	1.00%	8.00%	4.00%	36.00%	51.00%	4.280	0.944
I will use electronic performance if it is acceptable thing to do in the school community	0.00%	9.00%	3.00%	26.00%	62.00%	4.410	0.922
I will use electronic performance if It is available online	1.00%	5.00%	10.00%	28.00%	56.00%	4.330	0.922
I will use electronic performance if its outcome will be beneficial	0.00%	7.00%	2.00%	27.00%	64.00%	4.480	0.847
I will use electronic performance if it will not be used to deny me promotion	0.00%	8.00%	7.00%	28.00%	57.00%	4.340	0.924
I will use electronic performance if majority of teachers use it	4.00%	3.00%	6.00%	29.00%	58.00%	4.340	1.007
Average						4.386	0.884

SD=Strongly disagree, D=Disagree, NC=No comment, A=Agree, SA=Strongly agree, SD=Standard deviation

From the results it is evident that majority of the teachers (88%) would be willing to use electronic performance if their peers use it, 93% of the teachers agreed that they would use electronic performance if union leadership use it and the same was affirmed by a mean and standard deviation of 4.570 and 0.728 respectively. The results further show that majority of the teachers (87%) would agree to use electronic performance if they found it enjoyable, otherwise they wouldn't.

Additionally, majority of the teachers (88%) would use electronic performance if it is acceptable thing to do in the school community, 84% of the teachers would only use electronic performance if It is available online, while 91% would be willing to use electronic performance if its outcome is be beneficial. The results had a mean and standard deviation of 4.480 and 0.847 respectively.

Similarly, majority of the teachers (85%) would use electronic performance if it were not to be used to deny them promotion. Finally, majority of the teachers (87%) would use electronic performance if majority of teachers use it. The results had an average mean response of 4.386 and standard deviation of 0.884. This implies that most of the teachers involved in the study were generally agreeing with the statements on social influence.

Table 4: Descriptive Analysis on Resourced-Based Conditions

Statements	SD	D	NC	A	SA	Mean	SD
I will use electronic performance if it is valuable tool in my working	2.00%	7.00%	3.00%	40.00%	48.00%	4.250	0.957
I will use electronic performance if it is will accurately evaluate my work performance.	0.00%	11.00%	6.00%	41.00%	42.00%	4.140	0.954
I will use electronic performance if only use by TSC for evaluation only.	1.00%	3.00%	2.00%	28.00%	66.00%	4.550	0.770
I will use electronic performance if it will improve my work performance	2.00%	7.00%	12.00%	21.00%	58.00%	4.260	1.050
I will use electronic performance if it cannot be substituted by another system	0.00%	9.00%	10.00%	18.00%	63.00%	4.350	0.989
I will use electronic performance if it is necessary resource are available.	1.00%	4.00%	18.00%	31.00%	46.00%	4.170	0.933
I will use electronic performance if I will be the first to use the system.	1.00%	1.00%	15.00%	23.00%	60.00%	4.400	0.853
I will use electronic performance when other teachers use it.	0.00%	11.00%	10.00%	23.00%	56.00%	4.240	1.026
I will use Electronic Performance and will explain to other teachers	1.00%	7.00%	16.00%	22.00%	54.00%	4.210	1.018
I will use Electronic Performance it is in paper as before	2.00%	5.00%	8.00%	31.00%	54.00%	4.300	0.959
Average						4.287	0.951

SD=Strongly disagree, D=Disagree, NC=No comment, A=Agree, SA=Strongly agree, SD=Standard deviation

The results show that majority of the teachers (88%) were in agreement that they would use electronic performance if it is valuable tool in my working. The results also show that most of the teachers (83%) would use electronic performance if it is will accurately evaluate my work performance as shown by (Mean=4.140, SD=0.954). The results further show that most of the teachers (94%) would use electronic performance if only use by TSC for evaluation only (Mean=4.550, SD=0.770). Additionally, most (79%) of the teachers agreed that they would use electronic performance if it will improve their work performance, 81% of the teachers agreed that they would use electronic performance if it cannot be substituted by another system, while 77% would use electronic performance if it is necessary resource are available.

Moreover, the study results show that most of the respondents (83%) would use electronic performance if they would be the first to use the system (Mean=4.400, SD=0.853). The results further show that majority (76%) of the teachers were certain that they would use Electronic Performance and will explain to other teachers (Mean=4.210, SD=1.018). Finally, the results show that majority (85%) of the teachers were in agreement that they would use electronic performance it is in paper as before. The results had an average mean and standard deviation of 4.287 and 0.951 respectively. This implies that most of the teachers were in agreement with the statements on Resource-Based Conditions.

4.2 Correlation Analysis Results

Table 5: Correlation Matrix

		Adoption	Performance Expectancy	Effort Expectancy	Social Influence	Resource based conditions
Adoption	Pearson Correlation	1.000				
	Sig. (2-tailed)					
Performance Expectancy	Pearson Correlation	.692**	1.000			
	Sig. (2-tailed)	0.000				
Effort Expectancy	Pearson Correlation	.755**	.621**	1.000		
	Sig. (2-tailed)	0.000	0.000			
Social Influence	Pearson Correlation	.764**	.711**	.743**	1.000	
	Sig. (2-tailed)	0.000	0.000	0.000		
Resource based conditions	Pearson Correlation	.727**	.651**	.722**	.719**	1.000
	Sig. (2-tailed)	0.000	0.000	0.000	0.000	

** Correlation is significant at the 0.01 level (2-tailed).

As depicted in Table 5 there was a strong positive and significant association between Performance Expectancy and adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($r=0.692$, $p<0.05$) at 5% level of significance. The results are in agreement with the conclusion by Olsen (2008) and Alraja (2016) that performance expectancy is on

individual belied one improvement in job performance leading to acceptance and use of the technology.

The results also show that there existed a strong positive and significant association between effort expectancy and adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($r=0.755$, $p<0.05$) at 5% level of significance. This is consistent with the assertion by Gavurova *et al.* (2021) that the expected effort factor in the study significantly affects the expected performance factor, which can be characterized by original research, which shows that the effect of perceive ease of use on behavioral intent and use is incompatible with the degree of system complexity.

The study further showed that there was a strong and positive association between social influences and adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($r=0.764$, $p<0.05$) at 5% level of significance. The results are in agreement with the conclusion by Yang *et al.* (2009) who found that when knowledge worker considers adopting innovative IT, they are sensitive to general perception of its usefulness. The results have implications for management enquiry and practice, IT shows user attitude toward the innovation are important to success.

Finally, there existed a strong and positive association between resource based conditions and adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($r=0.727$, $p<0.05$) at 5% level of significance. According to Mang'ana (2022) adoption of innovative technologies (E-money transfer, telephone banking, internet banking and internal controls) have a positive and significant influence on competitive advantage on Commercial banks in Kenya.

4.3 Regression Analysis Results

Tables 6, 7 and 8 present the model summary, ANOVA, and regression of coefficient results respectively.

Table 6: Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.838a	0.702	0.690	0.4509

a. Predictors: (Constant), Resource based conditions, Performance Expectancy, Effort Expectancy, Social Influence

Source: Field Data, 2022

The results in Table 6 show that the coefficient of determination (R squared) is 0.702 and adjusted R squared of 0.690 at 95% significance level. The R squared of 0.702 implies that the variables used in this study of resource-based conditions, performance expectancy, effort expectancy and social influence jointly explains 70.2 percent of the variation in the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county. The remaining 29.8% of the variation in the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county can be explained by other factors which were not part of the current model.

Table 7: ANOVA

Model	Sum of Squares	Df	Mean Square	F	Sig.
1	Regression	45.594	4	11.398	56.064
	Residual	19.315	95	0.203	
	Total	64.908	99		

a. Dependent Variable: Adoption of Electronic Performance

b. Predictors: (Constant), Resource-based Conditions, Performance Expectancy, Effort Expectancy, Social Influence

Source: Field Data, 2022

In Table 7, ANOVA results are shown. The results show that the model was statistically significant in explaining the influence of selected factors (resource-based conditions, performance expectancy, effort expectancy and social influence) on adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county and it is indicated by a p-value of $0.000 < 0.05$.

Table 8: Multi Regression of Co-Efficient

Model	Unstandardized Coefficients		Standardized T Coefficients		Sig.
	B	Std. Error	Beta		
1	(Constant)	0.399	0.242	1.653	0.102
	Performance Expectancy	0.166	0.073	2.267	0.026
	Effort Expectancy	0.300	0.093	3.227	0.002
	Social Influence	0.255	0.094	2.704	0.008
	Resource based conditions	0.191	0.087	2.190	0.031

a. Dependent Variable: Adoption of Electronic Performance

Source: Field Data, 2022

The regression model therefore became;

$$AEP = 0.399 + 0.166PE + 0.300EE + 0.255SI + 0.191RC$$

Where:

AEP = Adoption of Electronic Performance

PE= Performance Expectancy

EE= Effort Expectancy

SI= Social Influence

RC= Resource-based Conditions

Regression coefficients in Table 8 show that performance expectancy had a positive and significant effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($\beta = .166$, $p = .026 < .05$). This was supported by a calculated t-statistic of 2.267 that was greater than the critical t-statistic of 1.96 further confirming the significance. The result

implies that, a unit improvement in performance expectancy results into an improvement in adoption of electronic performance by 0.166 units. The results implies further that performance expectancy significantly affects the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county. The results are in agreement with the findings of Olsen (2008) and Alraja (2016) that performance expectancy is on individual belief one improvement in job performance leading to acceptance and use of the technology.

The results also show that effort expectancy had a positive and significant effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($\beta = .300$, $p=.002 < .05$). This was supported by a calculated t-statistic of 3.227 that was greater than the critical t-statistic of 1.96 further confirming the significance. The results are in agreement with the conclusion by Gavurova *et al.* (2021) that the expected effort factor in the study significantly affects the expected performance factor, which can be characterized by original research, which shows that the effect of perceive ease of use on behavioral intent and use is incompatible with the degree of system complexity.

Furthermore, the results show that social influence had a positive and significant effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($\beta = .255$, $p=.008 < .05$). This concurs with the conclusion by Yang *et al.* (2009) who found that when knowledge worker considers adopting innovative IT, they are sensitive to general perception of its usefulness. The results have implications for management enquiry and practice, IT shows user attitude toward the innovation are important to success. Finally, Furthermore, the results show that resource-based conditions had a positive and significant effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county ($\beta = .191$, $p=.031 < .05$). According to Mang'ana (2022) adoption of innovative technologies (E-money transfer, telephone banking, internet banking and internal controls) have a positive and significant influence on competitive advantage on Commercial banks in Kenya.

4.4 Hypotheses Testing

H₀₁: Performance expectancy has no significant effect on adoption of Electronic Performance system

The hypothesis was tested by using multiple linear regression and determined using p-value and t-statistic. The acceptance/rejection criteria were that, if the p value is less than 0.05, we reject the H_{01} but if it is more than 0.05, then H_{01} is not rejected. Therefore, the null hypothesis was that performance expectancy has no significant effect on adoption of Electronic Performance system. Results in Table 8 shows that the p-value was 0.026. This was supported by a calculated t-statistic of 2.267 which was larger than the critical t-statistic of 1.96. The null hypothesis was therefore rejected. The study adopted the alternative hypothesis that performance expectancy has significant effect on adoption of Electronic Performance system.

H₀₂: Effort expectancy has no significant effect on adoption of Electronic Performance system.

The hypothesis was tested by using multiple linear regression and determined using p-value and t-statistic. The acceptance/rejection criteria were that, if the p value is less than 0.05, we reject the H_{02} but if it is more than 0.05, then H_{02} is not rejected. Therefore, the null hypothesis was that effort expectancy has no significant effect on adoption of Electronic Performance system. Results in Table 8 shows that the p-value was 0.002. This was supported by a calculated t-statistic of 3.227 which was larger than the critical t-statistic of 1.96. The null hypothesis was therefore rejected.

The study adopted the alternative hypothesis that effort expectancy has significant effect on adoption of Electronic Performance system.

H₀₃: Social influence has no significant effect on adoption of Electronic Performance system.

The hypothesis was tested by using multiple linear regression and determined using p-value and t-statistic. The acceptance/rejection criteria were that, if the p value is less than 0.05, we reject the H_{03} but if it is more than 0.05, then H_{03} is not rejected. Therefore, the null hypothesis was that social influence has no significant effect on adoption of Electronic Performance system. Results in Table 8 shows that the p-value was 0.008. This was supported by a calculated t-statistic of 2.704 which was larger than the critical t-statistic of 1.96. The null hypothesis was therefore rejected. The study adopted the alternative hypothesis that social influence has significant effect on adoption of Electronic Performance system.

H₀₄: Resource-based conditions have no significant effect on adoption of Electronic performance system.

The hypothesis was tested by using multiple linear regression and determined using p-value and t-statistic. The acceptance/rejection criteria were that, if the p value is less than 0.05, we reject the H_{04} but if it is more than 0.05, then H_{04} is not rejected. Therefore, the null hypothesis was that resource-based conditions have no significant effect on adoption of Electronic performance system. Results in Table 8 shows that the p-value was 0.031. This was supported by a calculated t-statistic of 2.190 which was larger than the critical t-statistic of 1.96. The null hypothesis was therefore rejected. The study adopted the alternative hypothesis that resource-based conditions have significant effect on adoption of Electronic performance system.

5.0 Conclusions

Based on the study findings, a number of conclusions can be drawn. First, the study concludes that the selected factors adopted by this study which included resource-based conditions, performance expectancy, effort expectancy and social influence have positive and significant effect on the adoption and implementation of electronic performance by public secondary school teachers in Bomet Central Sub-county. The study concludes that performance expectancy is positively and significant related to the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county. Thus, an improvement in performance expectancy results into an improvement into the adoption or implementation of electronic performance by teachers in public secondary schools in Bomet Central Sub County.

The study further concludes that effort expectancy and adoption of Electronic performance in public secondary schools in Bomet Central Sub County are positively and significantly related. This means that whenever there is an improvement in effort expectancy, there is an improvement in the adoption of electronic performance by teachers in public secondary schools in Bomet Central Sub County. This study further concludes that social influence has positive and significant effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county. Moreover, the study concludes that resource-based conditions have a positive and significant effect with the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county. Effort expectancy is based on the idea that there are relationships between the effort put forth at work, the performance achieved from that effort, and the rewards received from the effort, thus public secondary schools should embrace effort expectancy.

On the technological level, for successful adoption and integration of electronic performance into teaching, teachers must perceive the technology as better than previous practice; consistent with their existing values, past experiences and needs; ease to use, can be experimented with on a limited basis before making a decision to adopt and finally the results of the innovation are visible to others. Many teachers are hesitant to change an existing program to something they only know through discussion and reading and not through observation. These three characteristics or attributes of teachers' adoption and integration of electronic performance into schools provide information of factors supporting their use of technology as well as barriers to ICT integration.

6.0 Recommendations

Based on the findings and the conclusion, the current study recommends that the managements of public secondary schools in Bomet central sub county and the country at large should strive to embrace resource-based conditions, performance expectancy, effort expectancy and social influence, since they have been found to have positive effect on the adoption of electronic performance by public secondary school teachers in Bomet Central Sub-county. The study also recommends that the adoption of electronic performance should start with TSC before it can be adopted by secondary schools since many schools were found to be looking up to the TSC to give them guideline so as to adopt the system.

The managements of public secondary schools in Bomet central sub county should strive to offer their teachers special training and seminars on how to adopt electronic performance. Furthermore, TSC should create awareness among teachers in public secondary schools on the importance of adopting electronic performance. On the technological level, for successful adoption and integration of electronic performance into teaching, teachers must perceive the technology as better than previous practice; consistent with their existing values, past experiences and needs; ease to use, can be experimented with on a limited basis before making a decision to adopt and finally the results of the innovation are visible to others.

Many teachers are hesitant to change an existing program to something they only know through discussion and reading and not through observation. These three characteristics or attributes of teachers' adoption and integration of electronic performance into schools provide information of factors supporting their use of technology as well as barriers to ICT integration. The key factor in the studies is teachers' attitudes toward technology or intentions to use technology in their classrooms.

REFERENCES

- Ahmad, M. (2015) Unified Theory of Acceptance and Use of Technology (UTAUT). *A decade of validation and development*. <https://www.researchgate.net/publication/270282896>
- Ajzen, I. (2020). The theory of planned behavior: Frequently Asked Questions. *Hum Behav & Emerg Tech*, (2) 314-324. <https://doi.org/10.1002/hbe2.195>
- Alraja *et al.*, (2016). The Influence of Effort and Performance Expectancy on Employees to Adopt E-Government: Evidence from Oman. *International Review of management and marketing* 6(4) 930-934 www.econjournals.com
- Boot *et al.*, (2016). Technology, Gaming and Social Networking. *Handbook of the psychology of Aging*, (8) <https://www.sciencedirect.com/topics/social-sciences/technology-acceptance-model>
- Chauhan, V., Yadav, R., & Choudhary, V. (2022). Adoption of electronic banking services in India: an extension of UTAUT2 model. *Journal of Financial Services Marketing*, 27(1), 27-40. <https://doi.org/10.1057/s41264-021-00095-z>
- Edda *et al.*, (2020). Adoption and Impacts of Electronic Records Management Systems (ERMS) in Tanzania: Perspectives from Tanzania Public Service College.
- Fedorko, I., Bačík, R., & Gavurova, B. (2021). Effort expectancy and social influence factors as main determinants of performance expectancy using electronic banking. *Banks and Bank Systems*, 16(2), 27. [https://doi.org/10.21511/bbs.16\(2\).2021.03](https://doi.org/10.21511/bbs.16(2).2021.03)
- Gavurova *et al.*, (2021) Effort expectancy and Social Influence Factors as Main Determinants of Performance Expectancy Using Electronic Banking. *Banks and Banks Systems*. 16(2), 27-37 [http://dx.doi.org/10.21511/bbs.16\(2\)2021.03](http://dx.doi.org/10.21511/bbs.16(2)2021.03)
- Ghalandari, K. (2012). The effect of performance expectancy, effort expectancy, social influence and facilitating conditions on acceptance of e-banking services in Iran: The moderating role of age and gender. *Middle-East Journal of Scientific Research*, 12(6), 801-807.
- Hutabarat, Z., Suryawan, I. N., Andrew, R., & Akwila, F. P. (2021). Effect Of Performance Expectancy And Social Influence On Continuance Intention In OVO. *Jurnal Manajemen*, 25(1), 125-140. <https://doi.org/10.24912/jm.v25i1.707>
- Kipsoi, E.J, Chang'ach, J.K, Sang, H.E. (2012). Challenges Facing Adoption of Information and Communication Technology (ICT) in Educational Management in Schools in Kenya. *Journal of Sociological Research*, 3(1), ISSN: 1948-5468. <https://doi.org/10.5296/jsr.v3i1.1882>
- Krejcie, R.V., & Morgan, D.W. (1970). Determining sample size for research activities. *Education and psychological measurement*. 30, 607-610. <https://doi.org/10.1177/001316447003000308>
- Mensah, I. K., Zeng, G., Luo, C., Zhi-wu, X., & Lu, M. (2021). Factors predicting the behavioral adoption of Electronic Payment System (EPS). *International Journal of Information Systems in the Service Sector (IJISSS)*, 13(1), 88-104. <https://doi.org/10.4018/IJISSS.2021010105>

- Rahi, S., Mansour, M. M. O., Alghizzawi, M., & Alnaser, F. M. (2019). Integration of UTAUT model in internet banking adoption context: The mediating role of performance expectancy and effort expectancy. *Journal of Research in Interactive Marketing*. <https://doi.org/10.1108/JRIM-02-2018-0032>
- Ronoh, E. (2018). Teachers Union Opposes TSC's Appraisal tool. *Hivisasa*. <https://hivisasa.com/posts/teachers-union-opposes-tscts-appraisal-tool>
- Schmidt *et al.*, (2020). The Theory of Planned Behavior: Selected recent Advances and Applications. *Eur J Psychol. 16(3)* 352-356. Doi [10.5964/ejop.v16i3.3107](https://doi.org/10.5964/ejop.v16i3.3107)
- Sung, H. N., Jeong, D. Y., Jeong, Y. S., & Shin, J. I. (2015). The relationship among self-efficacy, social influence, performance expectancy, effort expectancy, and behavioral intention in mobile learning service. *International Journal of u-and e-Service, Science and Technology*, 8(9), 197-206. <https://doi.org/10.14257/ijunesst.2015.8.9.21>
- Surendran, P. (2012), Technology Acceptance Model: A survey of Literature, *International Journal of Business and social Research (IJBSR)*, 2(4)
- Sutton, S. (2001). Health Behavior: Psychological Theories. *International Encyclopedia of the Social and Behavioral Sciences*. <https://doi.org/10.1016/B0-08-043076-7/03872-9>
- Yang *et al.*, (2009). Social Influence on Knowledge Workers Adoption of innovation information Technology. *Journal of Computer Information Systems*. 50.